科目: 來源: 題型:解答題
如圖,橢圓C:
=1(a>b>0)的離心率為
,其左焦點到點P(2,1)的距離為
.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.![]()
(1)求橢圓C的方程;
(2)求△ABP面積取最大值時直線l的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線
.
(1)若圓心在拋物線
上的動圓,大小隨位置而變化,但總是與直線
相切,求所有的圓都經(jīng)過的定點坐標(biāo);
(2)拋物線
的焦點為
,若過
點的直線與拋物線相交于
兩點,若
,求直線
的斜率;
(3)若過
正半軸上
點的直線與該拋物線交于
兩點,
為拋物線上異于
的任意一點,記
連線的斜率為
試求滿足
成等差數(shù)列的充要條件.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖;已知橢圓C:
的離心率為
,以橢圓的左頂點T為圓心作圓T:
設(shè)圓T與橢圓C交于點M、N.![]()
(1)求橢圓C的方程;
(2)求
的最小值,并求此時圓T的方程;
(3)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與
軸交于點R,S,O為坐標(biāo)原點。求證:
為定值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖;.已知橢圓C:
的離心率為
,以橢圓的左頂點T為圓心作圓T:
設(shè)圓T與橢圓C交于點M、N.![]()
(1)求橢圓C的方程;
(2)求
的最小值,并求此時圓T的方程;
(3)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與
軸交于點R,S,O為坐標(biāo)原點. 試問;是否存在使
最大的點P,若存在求出P點的坐標(biāo),若不存在說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,已知
,
,
是橢圓
上不同的三點,
,
,
在第三象限,線段
的中點在直線
上.![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點C的坐標(biāo);
(3)設(shè)動點
在橢圓上(異于點
,
,
)且直線PB,PC分別交直線OA于
,
兩點,證明
為定值并求出該定值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,已知
,
,
是橢圓
上不同的三點,
,
,
在第三象限,線段
的中點在直線
上.![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點C的坐標(biāo);
(3)設(shè)動點
在橢圓上(異于點
,
,
)且直線PB,PC分別交直線OA于
,
兩點,證明
為定值并求出該定值.
查看答案和解析>>
科目: 來源: 題型:解答題
橢圓
以雙曲線
的實軸為短軸、虛軸為長軸,且與拋物線
交于
兩點.
(1)求橢圓
的方程及線段
的長;
(2)在
與
圖像的公共區(qū)域內(nèi),是否存在一點
,使得
的弦
與
的弦
相互垂直平分于點
?若存在,求點
坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
在平面直角坐標(biāo)系
中,點P到兩圓C1與C2的圓心的距離之和等于4,其中C1:
,C2:
. 設(shè)點P的軌跡為
.
(1)求C的方程;
(2)設(shè)直線
與C交于A,B兩點.問k為何值時![]()
![]()
?此時
的值是多少?
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)雙曲線C:
(a>0,b>0)的一個焦點坐標(biāo)為(
,0),離心率
, A、B是雙曲線上的兩點,AB的中點M(1,2).
(1)求雙曲線C的方程;
(2)求直線AB方程;
(3)如果線段AB的垂直平分線與雙曲線交于C、D兩點,那么A、B、C、D四點是否共圓?為什么?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com