科目: 來源: 題型:解答題
(本小題滿分12分)
如圖所示,將一矩形花壇
擴建成一個更大的矩形花壇
,要求
點在
上,
點在
上,且對角線
過點
,已知
米,
米.
(1)要使矩形
的面積大于32平方米,則
的長應(yīng)在什么范圍內(nèi)?
(2)當(dāng)
的長度為多少時,矩形花壇
的面積最?并求出最小值.![]()
查看答案和解析>>
科目: 來源: 題型:解答題
已知點
,點
,直線
、
都是圓
的切線(
點不在
軸上)。
⑴求過點
且焦點在
軸上拋物線的標(biāo)準(zhǔn)方程;
⑵過點
作直線
與⑴中的拋物線相交于
、
兩點,問是否存在定點
,使
.
為常數(shù)?若存在,求出點
的坐標(biāo)與常數(shù);若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:解答題
(本大題滿分14分)
已知△
的兩個頂點
的坐標(biāo)分別是
,
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當(dāng)
時,過點
的直線
交曲線
于
兩點,設(shè)點
關(guān)于
軸的對稱點為
(
不重合).求證直線
與
軸的交點為定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓C:
=1(a>b>0)的離心率為
,短軸一個端點到右焦點的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點,坐標(biāo)原點O到直線l的距離為
,求△AOB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓
的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓
和
上,
,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
在平面直角坐標(biāo)系
中,已知三點
,
,
,曲線C上任意—點
滿足:
.
(l)求曲線C的方程;
(2)設(shè)點P是曲線C上的任意一點,過原點的直線L與曲線相交于M,N兩點,若直線PM,PN的斜率都存在,并記為
,
.試探究
的值是否與點P及直線L有關(guān),并證明你的結(jié)論;
(3)設(shè)曲線C與y軸交于D、E兩點,點M (0,m)在線段DE上,點P在曲線C上運動.若當(dāng)點P的坐標(biāo)為(0,2)時,
取得最小值,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的中心在坐標(biāo)原點、對稱軸為坐標(biāo)軸,且拋物線
的焦點是它的一個焦點,又點
在該橢圓上.
(1)求橢圓
的方程;
(2)若斜率為
直線
與橢圓
交于不同的兩點
,當(dāng)
面積的最大值時,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)
(其中
且
為常數(shù))的圖像經(jīng)過點A
、B
.
是函數(shù)
圖像上的點,
是
正半軸上的點.
(1) 求
的解析式;
(2) 設(shè)
為坐標(biāo)原點,
是一系列正三角形,記它們的邊長是
,求數(shù)列
的通項公式;
(3) 在(2)的條件下,數(shù)列
滿足
,記
的前
項和為
,證明:
。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點
是其左頂點,點C在橢圓上且
·
="0," |
|=|
|.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線
和橢圓交于M,N兩個不同點,求
面積的最大值,并求此時直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com