科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知二次函數(shù)
,關于x的不等式
的解集為
,其中m為非零常數(shù).設
.
(1)求a的值;
(2)
如何取值時,函數(shù)
存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:![]()
查看答案和解析>>
科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
設
,
,其中
是常數(shù),且
.
(1)求函數(shù)
的極值;
(2)證明:對任意正數(shù)
,存在正數(shù)
,使不等式
成立;
(3)設
,且
,證明:對任意正數(shù)
都有:
.
查看答案和解析>>
科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知
,
,且直線
與曲線
相切.
(1)若對
內(nèi)的一切實數(shù)
,不等式
恒成立,求實數(shù)
的取值范圍;
(2)當
時,求最大的正整數(shù)
,使得對
(
是自然對數(shù)的底數(shù))內(nèi)的任意
個實數(shù)
都有
成立;
(3)求證:
.
查看答案和解析>>
科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知函數(shù)
,函數(shù)
是函數(shù)
的導函數(shù).
(1)若
,求
的單調(diào)減區(qū)間;
(2)若對任意
,
且
,都有
,求實數(shù)
的取值范圍;
(3)在第(2)問求出的實數(shù)
的范圍內(nèi),若存在一個與
有關的負數(shù)
,使得對任意
時
恒成立,求
的最小值及相應的
值.
查看答案和解析>>
科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知
(
,
是常數(shù)),若對曲線
上任意一點
處的切線
,
恒成立,求
的取值范圍.
查看答案和解析>>
科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知函數(shù)![]()
(I)若
,是否存在a,b
R,y=f(x)為偶函數(shù).如果存在.請舉例并證明你的結論,如果不存在,請說明理由;
〔II)若a=2,b=1.求函數(shù)
在R上的單調(diào)區(qū)間;
(III )對于給定的實數(shù)
成立.求a的取值范圍.
查看答案和解析>>
科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知函數(shù)
,
,函數(shù)
的圖象在點
處的切線平行于
軸.
(1)確定
與
的關系;
(2)試討論函數(shù)
的單調(diào)性;
(3)證明:對任意
,都有
成立。
查看答案和解析>>
科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
若
,其中
.
(1)當
時,求函數(shù)
在區(qū)間
上的最大值;
(2)當
時,若
,
恒成立,求
的取值范圍.
查看答案和解析>>
科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知函數(shù)![]()
(Ⅰ)當
在區(qū)間
上的最大值和最小值;
(Ⅱ)若在區(qū)間
上,函數(shù)
的圖象恒在直線
下方,求
的取值范圍.
查看答案和解析>>
科目: 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知函數(shù)![]()
(1)若
為
的極值點,求
的值;
(2)若
的圖象在點
處的切線方程為
,
①求
在區(qū)間
上的最大值;
②求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com