欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  231109  231117  231123  231127  231133  231135  231139  231145  231147  231153  231159  231163  231165  231169  231175  231177  231183  231187  231189  231193  231195  231199  231201  231203  231204  231205  231207  231208  231209  231211  231213  231217  231219  231223  231225  231229  231235  231237  231243  231247  231249  231253  231259  231265  231267  231273  231277  231279  231285  231289  231295  231303  266669 

科目: 來(lái)源: 題型:選擇題

9.若直線x=m(m>1)與函數(shù)f(x)=logax,g(x)=logbx的圖象及x軸分別交于A,B,C三點(diǎn).若|AB|=2|BC,則|( 。
A.b=a2或a=b2B.a=b-1或a=b3C.a=b-1或b=a3D.a=b3

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.已知的定義域?yàn)椋?,π),且對(duì)定義域的任意x恒有f′(x)sinx>f(x)cosx成立,則下列關(guān)系成立的是( 。
A.f($\frac{2016π}{2017}$)>f($\frac{π}{2017}$)
B.f($\frac{2016π}{2017}$)=f($\frac{π}{2017}$)
C.f($\frac{2016π}{2017}$)<f($\frac{π}{2017}$)
D.f($\frac{2016π}{2017}$)與f($\frac{π}{2017}$)的大小關(guān)系不確定

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.梯形ABCD中,AB∥CD,CD=2AB,AC交BD于O點(diǎn),過(guò)O點(diǎn)的直線交AD、BC分別于E、F點(diǎn),$\overrightarrow{DE}$=m$\overrightarrow{DA}$,$\overrightarrow{CF}$=n$\overrightarrow{CB}$,則$\frac{1}{2-m}$+$\frac{1}{2-n}$=(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin($\frac{π}{4}$+θ)=2$\sqrt{2}$
(1)將曲線C上各點(diǎn)的縱坐標(biāo)伸長(zhǎng)為原來(lái)的兩倍,得到曲線C1,寫出曲線C1的極坐標(biāo)方程.
(2)若射線θ=$\frac{π}{6}$與l的交點(diǎn)分別為A,射線θ=-$\frac{π}{6}$與l的交點(diǎn)分別為B,求△OAB的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=lnx+1.
(1)已知函數(shù)$F(x)=f(x)+\frac{1}{4}{x^2}-\frac{3}{2}x+\frac{1}{4}$,求函數(shù)F(x)的極值;
(2)已知函數(shù)G(x)=f(x)+ax2-(2a+1)x+a(a>0).若存在實(shí)數(shù)m∈(2,3),使得當(dāng)x∈(0,m]時(shí),函數(shù)G(x)的最大值為G(m),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.對(duì)任意x,y∈R,恒有$sinx+cosy=2sin(\frac{x-y}{2}+\frac{π}{4})cos(\frac{x+y}{2}-\frac{π}{4})$,則$sin\frac{7π}{24}cos\frac{13π}{24}$等于(  )
A.$\frac{{1+\sqrt{2}}}{4}$B.$\frac{{1-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.函數(shù)f(x)=sinx-cosx-1的最小正周期是2π,單調(diào)遞增區(qū)間是[2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$],k∈Z.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.如圖所示,⊙O是四邊形ABCD的外接圓,BC與過(guò)點(diǎn)D的切線l交于點(diǎn)E,CD是∠BDE的角平分線,AD⊥CD.
(1)證明:∠ADB=∠ABD;
(2)設(shè)⊙O的半徑r=2,BD=2$\sqrt{3}$,求△BDE的外接圓的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.以坐標(biāo)原點(diǎn)為極點(diǎn)x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線${C_1}:{(x-2)^2}+{y^2}=4$,點(diǎn)A的極坐標(biāo)為$(3\sqrt{2},\frac{π}{4})$,直線l的極坐標(biāo)方程為$ρcos(θ-\frac{π}{4})=a$,且點(diǎn)A在直線l上.
(1)求曲線C1的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)設(shè)l向左平移6個(gè)單位后得到l′,l′與C1的交點(diǎn)為M,N,求l′的極坐標(biāo)方程及|MN|的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.空間四點(diǎn)A、B、C、D滿足|AB|=1,|CD|=2,E、F分別是AD、BC的中點(diǎn),若AB與CD所在直線的所成角為60°,則|EF|=$\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{7}}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案