科目: 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共
個,生產(chǎn)一個衛(wèi)兵需
分鐘,生產(chǎn)一個騎兵需
分鐘,生產(chǎn)一個傘兵需
分鐘,已知總生產(chǎn)時間不超過
小時,若生產(chǎn)一個衛(wèi)兵可獲利潤
元,生產(chǎn)一個騎兵可獲利潤
元,生產(chǎn)一個傘兵可獲利潤
元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)
與騎兵個數(shù)
表示每天的利潤
(元);
(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標(biāo)
中,設(shè)橢圓
:
的左右兩個焦點(diǎn)分別為
,
,過右焦點(diǎn)
且與
軸垂直的直線
與橢圓
相交,其中一個交點(diǎn)為
.
![]()
(1)求橢圓
的方程;
(2)已知
,
經(jīng)過點(diǎn)
且斜率為
,直線
與橢圓
有兩個不同的
和
交點(diǎn),請問是否存在常數(shù)
,使得向量
與
共線?如果存在,求出
的值;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共
個,生產(chǎn)一個衛(wèi)兵需
分鐘,生產(chǎn)一個騎兵需
分鐘,生產(chǎn)一個傘兵需
分鐘,已知總生產(chǎn)時間不超過
小時,若生產(chǎn)一個衛(wèi)兵可獲利潤
元,生產(chǎn)一個騎兵可獲利潤
元,生產(chǎn)一個傘兵可獲利潤
元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)
與騎兵個數(shù)
表示每天的利潤
(元);
(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)產(chǎn)生每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān),某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車中隨機(jī)抽取50輛,統(tǒng)計數(shù)據(jù)如下:
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故障時間x(年) | 0<x<1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轎車數(shù)量(輛) | 2 | 3 | 45 | 5 | 45 |
每輛利潤(萬元) | 1 | 2 | 3 | 1.8 | 2.9 |
將頻率視為概率,解答下列問題:
(Ⅰ)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(Ⅱ)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛甲品牌轎車的利潤為X1 , 生產(chǎn)一輛乙品牌轎車的利潤為X2 , 分別求X1 , X2的分布列;
(Ⅲ)該廠預(yù)計今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌轎車,若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種品牌的轎車?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),在極坐標(biāo)(與直角坐標(biāo)系
取相同的長度單位,且以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸)中,圓
的方程為![]()
(1)求圓
的直角坐標(biāo)方程;
(2)設(shè)圓
與直線
交于點(diǎn)
,
,若點(diǎn)
的坐標(biāo)為
,求
.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于實數(shù)a和b,定義運(yùn)算“*”:a*b=
設(shè)f(x)=(2x﹣1)*(x﹣1),且關(guān)于x的方程為f(x)=m(m∈R)恰有三個互不相等的實數(shù)根x1 , x2 , x3 , 則x1x2x3的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
分別是橢圓
的左、右焦點(diǎn),離心率為
,
分別是橢圓的上、下頂點(diǎn),
.
(1)求橢圓
的方程;
(2)若直線
與橢圓
交于相異兩點(diǎn)
,且滿足直線
的斜率之積為
,證明:直線
恒過定點(diǎn),并采定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)f(x)在[a,b]上有定義,若對任意x1 , x2∈[a,b],有
則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,3]上具有性質(zhì)P,現(xiàn)給出如下命題:
①f(x)在[1,3]上的圖象是連續(xù)不斷的;
②f(x2)在[1,
]上具有性質(zhì)P;
③若f(x)在x=2處取得最大值1,則f(x)=1,x∈[1,3];
④對任意x1 , x2 , x3 , x4∈[1,3],有
[f(x1)+f(x2)+f(x3)+f(x4)]
其中真命題的序號是( )
A.①②
B.①③
C.②④
D.③④
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區(qū)間表示);
(2)求函數(shù)f(x)=2x3﹣3(1+a)x2+6ax在D內(nèi)的極值點(diǎn).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com