科目: 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準
(噸)、一位居民的月用水量不超過
的部分按平價收費,超出
的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
![]()
(Ⅰ)求直方圖中a的值;
(Ⅱ)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準
(噸),估計
的值,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】若直角坐標平面內的兩點P,Q滿足條件:①P,Q都在函數y=f(x)的圖象上;②P,Q關于原點對稱,則稱點對(P,Q)是函數y=f(x)的一對“友好點對”(點對(P,Q)與(Q,P)看作同一對“友好點對”).已知函數f(x)=
,則此函數的“友好點對”有( )
A.3對
B.2對
C.1對
D.0對
查看答案和解析>>
科目: 來源: 題型:
【題目】隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數據的莖葉圖如圖7.
![]()
(1)根據莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列幾個命題:
①命題p:任意x∈R,都有cosx≤1,則¬p:存在x0∈R,使得cosx0≤1
②命題“若a>2且b>2,則a+b>4且ab>4”的逆命題為假命題
③空間任意一點O和三點A,B,C,則
=3
=2
是A,B,C三點共線的充分不必要條件
④線性回歸方程y=bx+a對應的直線一定經過其樣本數據點(x1 , y1),(x2 , y2),…,(xn , yn)中的一個
其中不正確的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 通項公式為
.
(Ⅰ)計算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數學歸納法證明你的結論.
查看答案和解析>>
科目: 來源: 題型:
【題目】集合M={1,2…9}中抽取3個不同的數構成集合{a1 , a2 , a3}
(1)對任意i≠j,求滿足|ai﹣aj|≥2的概率;
(2)若a1 , a2 , a3成等差數列,設公差為ξ(ξ>0),求ξ的分布列及數學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】設數列{an}和{bn}的項數均為m,則將數列{an}和{bn}的距離定義為
|ai﹣bi|.
(1)給出數列1,3,5,6和數列2,3,10,7的距離;
(2)設A為滿足遞推關系an+1=
的所有數列{an}的集合,{bn}和{cn}為A中的兩個元素,且項數均為m,若b1=2,c1=3,{bn}和{cn}的距離小于2016,求m的最大值;
(3)記S是所有7項數列{an|1≤n≤7,an=0或1}的集合,TS,且T中任何兩個元素的距離大于或等于3,證明:T中的元素個數小于或等于16.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)=ax3﹣bx2+cx+b﹣a(a>0).
(1)設c=0. ①若a=b,曲線y=f(x)在x=x0處的切線過點(1,0),求x0的值;
②若a>b,求f(x)在區(qū)間[0,1]上的最大值.
(2)設f(x)在x=x1 , x=x2兩處取得極值,求證:f(x1)=x1 , f(x2)=x2不同時成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在
軸上,離心率為
,且過點P
。
(1)求橢圓的標準方程;
(2)已知斜率為1的直線l過橢圓的右焦點F交橢圓于A.B兩點,求弦AB的長。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:mx2+3my2=1(m>0)的長軸長為
,O為坐標原點.
(1)求橢圓C的方程和離心率.
(2)設點A(3,0),動點B在y軸上,動點P在橢圓C上,且點P在y軸的右側.若BA=BP,求四邊形OPAB面積的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com