科目: 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的單調增區(qū)間;
(2)若
,解不等式
;
(3)若
,且對任意
,方程
在
總存在兩不相等的實數(shù)根,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線
平面
,垂足為
,正四面體(所有棱長都相等的三棱錐)
的棱長為2,
在平面
內,
是直線
上的動點,當
到
的距離為最大時,正四面體在平面
上的射影面積為 . ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】所謂正三棱錐,指的是底面為正三角形,頂點在底面上的射影為底面三角形中心的三棱錐,在正三棱錐
中,
是
的中點,且
,底面邊長
,則正三棱錐
的體積為 , 其外接球的表面積為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù)),在以
為極點,
軸的正半軸為極軸的極坐標系中,曲線
是圓心為
,半徑為1的圓.
(1)求曲線
,
的直角坐標方程;
(2)設
為曲線
上的點,
為曲線
上的點,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓
:
(
)與直線
:
相切,設點
為圓上一動點,
軸于
,且動點
滿足
,設動點
的軌跡為曲線
.
(1)求曲線
的方程;
(2)直線
與直線
垂直且與曲線
交于
,
兩點,求
面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能
與韓國棋手李世石進行最后一輪較量,
獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格
.人機大戰(zhàn)也引發(fā)全民對圍棋的關注,某學校社團為調查學生學習圍棋的情況,隨機抽取了100名學生進行調查.根據(jù)調查結果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有
的把握認為“圍棋迷”與性別有關?![]()
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為
。若每次抽取的結果是相互獨立的,求
的分布列,期望
和方差
.
附:
,其中
.
| 0.05 | 0.01 |
| 3.841 | 6.635 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com