科目: 來源: 題型:
【題目】某項競賽分為初賽、復(fù)賽、決賽三個階段進行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是
,且各階段通過與否相互獨立.
(1)求該選手在復(fù)賽階段被淘汰的概率;
(2)設(shè)該選手在競賽中回答問題的個數(shù)為
,求
的分布列、數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線
,將曲線
上的點向左平移一個單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長到原來的2倍,得到曲線
,又已知直線
(
是參數(shù)),且直線
與曲線
交于
兩點.
(I)求曲線
的直角坐標(biāo)方程,并說明它是什么曲線;
(II)設(shè)定點
,求
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
,
.
(I)若
,求函數(shù)
在點
處的切線方程;
(II)若函數(shù)
在
上是增函數(shù),求實數(shù)
的取值范圍;
(III)令
,
(
是自然對數(shù)的底數(shù)),求當(dāng)實數(shù)
等于多少時,可以使函數(shù)
取得最小值為3.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
為坐標(biāo)原點,拋物線
在第一象限內(nèi)的點
到焦點的距離為
,曲線
在點
處的切線交
軸于點
,直線
經(jīng)過點
且垂直于
軸.
(Ⅰ)求線段
的長;
(Ⅱ)設(shè)不經(jīng)過點
和
的動直線
交曲線
于點
和
,交
于點
,若直線
的斜率依次成等差數(shù)列,試問:
是否過定點?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如下圖,已知四棱錐
中,底面
為菱形,
平面
,
,
,
分別是
,
的中點.
![]()
(I)證明:
平面
;
(II)取
,在線段
上是否存在點
,使得
與平面
所成最大角的正切值為
,若存在,請求出
點的位置;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓元旦當(dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計部門隨機抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.
![]()
(I)先求出
的值,再將如圖4所示的頻率分布直方圖繪制完整;
(II)對這100名網(wǎng)購者進一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,
購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)
此判斷能否在犯錯誤的概率不超過0.025的前提下認為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?
![]()
參考數(shù)據(jù):
![]()
參考公式:
,其中
.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
已知平面直角坐標(biāo)系
,以
為極點,
軸的非負半軸為極軸建立極坐標(biāo)系,曲線
的參數(shù)方程為
為參數(shù)). 點
是曲線
上兩點,點
的極坐標(biāo)分別為
.
(1)寫出曲線
的普通方程和極坐標(biāo)方程;
(2)求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com