科目: 來源: 題型:
【題目】對(duì)于函數(shù)
,若在定義域存在實(shí)數(shù)
,滿足
,則稱
為“局部奇函數(shù)”.
(1)已知二次函數(shù)
,試判斷
是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)
是定義在
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線
經(jīng)過橢圓
:
的左頂點(diǎn)
和上頂點(diǎn)
,橢圓
的右頂點(diǎn)為
,點(diǎn)
是橢圓
上位于
軸上方的動(dòng)點(diǎn),直線
與直線
分別交于
兩點(diǎn)。
(1)求橢圓方程;
(2)求線段
的長(zhǎng)度的最小值;
(3)當(dāng)線段
的長(zhǎng)度最小時(shí),在橢圓上有兩點(diǎn)
,使得
,
的面積都為
,求直線
在y軸上的截距。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖, 直線
與拋物線
交于
兩點(diǎn), 線段
的垂直平分線與直線
交于
點(diǎn).
![]()
(1)求點(diǎn)
的坐標(biāo);
(2)當(dāng)P為拋物線上位于線段
下方(含
)的動(dòng)點(diǎn)時(shí), 求ΔOPQ面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
過點(diǎn)
,其參數(shù)方程為
(
為參數(shù),
),以
為極點(diǎn),
軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)求已知曲線
和曲線
交于
兩點(diǎn),且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
| 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
算得,
.見附表:參照附表,得到的正確結(jié)論是( 。
A. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足
=f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)<0.
(1)證明:f(x)為單調(diào)遞減函數(shù).
(2)若f(3)=-1,求f(x)在[2,9]上的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列結(jié)論:
①“
且
為真”是“
或
為真”的充分不必要條件:②“
且
為假”是“
或
為真”的充分不必要條件;③“
或
為真”是“非
為假”的必要不充分條件;④“非
為真”是“
且
為假”的必要不充分條件.
其中,正確的結(jié)論是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若不等式
對(duì)任意的正實(shí)數(shù)
都成立,求實(shí)數(shù)
的最大整數(shù);
(3)當(dāng)
時(shí),若存在實(shí)數(shù)
且
,使得
,求證:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com