科目: 來(lái)源: 題型:
【題目】
某初級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如下表:
初一年級(jí) | 初二年級(jí) | 初三年級(jí) | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級(jí)女生的概率是0.19.
求x的值;
現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問(wèn)應(yīng)在初三年級(jí)抽取多少名?
已知y
245,z
245,求初三年級(jí)中女生比男生多的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
,點(diǎn)
也為拋物線
的焦點(diǎn).(1)若
為橢圓
上兩點(diǎn),且線段
的中點(diǎn)為
,求直線
的斜率;
(2)若過(guò)橢圓
的右焦點(diǎn)
作兩條互相垂直的直線分別交橢圓于
和
,設(shè)線段
的長(zhǎng)分別為
,證明
是定值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某高校在2010年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示。
![]()
(1)求第3、4、5組的頻率;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某商場(chǎng)舉行抽獎(jiǎng)活動(dòng),從裝有編號(hào)0,1,2,3四個(gè)球的抽獎(jiǎng)箱中,每次取出后放回,連續(xù)取兩次,取出的兩個(gè)小球號(hào)碼相加之和等于6中特等獎(jiǎng),等于5中一等獎(jiǎng),等于4中二等獎(jiǎng),等于3中三等獎(jiǎng).
(1)求中二等獎(jiǎng)的概率;
(2)求未中獎(jiǎng)的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若acos2
+ccos2
=
b.
(1)求證:a,b,c成等差數(shù)列;
(2)若∠B=60°,b=4,求△ABC的面積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,四邊形
是菱形,
,平面
平面![]()
在棱
上運(yùn)動(dòng).
![]()
(1)當(dāng)
在何處時(shí),
平面
;
(2)已知
為
的中點(diǎn),
與
交于點(diǎn)
,當(dāng)
平面
時(shí),求三棱錐
的體積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】直三棱柱
中,
,
分別是
,
的中點(diǎn),
,
為棱
上的點(diǎn).
![]()
證明:
;
證明:
;
是否存在一點(diǎn)
,使得平面
與平面
所成銳二面角的余弦值為
?若存在,說(shuō)明點(diǎn)
的位置,若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】給出以下命題,其中真命題的個(gè)數(shù)是( )
①若“
或
”是假命題,則“
且
”是真命題;
②命題“若
,則
或
”為真命題;
③已知空間任意一點(diǎn)
和不共線的三點(diǎn)
,
,
,若
,則
,
,
,
四點(diǎn)共面;
④直線
與雙曲線
交于
,
兩點(diǎn),若
,則這樣的直線有3條;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知向量
,
,
,
,函數(shù)
,
的最小正周期為
.
(1)求
的單調(diào)增區(qū)間;
(2)方程
;在
上有且只有一個(gè)解,求實(shí)數(shù)n的取值范圍;
(3)是否存在實(shí)數(shù)m滿足對(duì)任意x1∈[-1,1],都存在x2∈R,使得
+
+m(
-
)+1>f(x2)成立.若存在,求m的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知圓
過(guò)點(diǎn)
,
,且圓心
在直線
上,過(guò)點(diǎn)
作直線
與圓
:
交于兩點(diǎn)
,
.
(1)求圓
的方程;
(2)當(dāng)
時(shí),若
于圓
交于
,
且
,求直線
的方程;
(3)若點(diǎn)
恰好是線段
的中點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com