科目: 來源: 題型:
【題目】在自然數(shù)列中由1開始依次按如下規(guī)則將某些數(shù)染成紅色.先染1;再染兩個(gè)偶數(shù)2,4;再染4后最鄰近的三個(gè)連續(xù)奇數(shù)5,7,9;再染9后最鄰近的四個(gè)連續(xù)偶數(shù)10,12,14,16;再染此后最鄰近的五個(gè)連續(xù)奇數(shù)17,19,21,23,25.按此規(guī)則一直染下去,得一紅色子列1,2,4,5,7,9,10,12,14,16,17,….則紅色子列中由1開始數(shù)起的第1996個(gè)數(shù)是_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】濱海市政府今年加大了招商引資的力度,吸引外資的數(shù)量明顯增加.一外商計(jì)劃在濱海市投資兩個(gè)項(xiàng)目,總投資20億元,其中甲項(xiàng)目的10年收益額
(單位:億元)與投資額
(單位:億元)滿足
,乙項(xiàng)目的10年收益額
(單位:億元)與投資額
(單位:億元)滿足
,并且每個(gè)項(xiàng)目至少要投資2億元.設(shè)兩個(gè)項(xiàng)目的10年收益額之和為
.
(1)求
;
(2)如何安排甲、乙兩個(gè)項(xiàng)目的投資額,才能使這兩個(gè)項(xiàng)目的10年收益額之和
最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F且斜率為
的直線l與拋物線C交于A,B兩點(diǎn),B在x軸的上方,且點(diǎn)B的橫坐標(biāo)為4.![]()
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P為拋物線C上異于A,B的點(diǎn),直線PA與PB分別交拋物線C的準(zhǔn)線于E,G兩點(diǎn),x軸與準(zhǔn)線的交點(diǎn)為H,求證:HGHE為定值,并求出定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l方程為(m+2)x﹣(m+1)y﹣3m﹣7=0,m∈R.
(1)求證:直線l恒過定點(diǎn)P,并求出定點(diǎn)P的坐標(biāo);
(2)若直線l在x軸,y軸上的截距相等,求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校有微機(jī)
臺(tái),分別放在
個(gè)房間,各房間開門鑰匙互不相同.某期培訓(xùn)班有學(xué)員
人(
),每晚恰有
人進(jìn)機(jī)房實(shí)習(xí)操作,為保證每人一臺(tái)機(jī),至少應(yīng)準(zhǔn)備多少把鑰匙分給這
個(gè)學(xué)員,使得每晚不論哪
個(gè)人進(jìn)機(jī)房,都能用自己分到的鑰匙打開一間機(jī)房的門進(jìn)去練習(xí),并按分得鑰匙少的人先開門的原則,能保證每人恰可得到一個(gè)房間.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓![]()
(1)求圓
關(guān)于直線
對(duì)稱的圓
的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)
的直線
被圓
截得的弦長(zhǎng)為8,求直線
的方程;
(3)當(dāng)
取何值時(shí),直線
與圓
相交的弦長(zhǎng)最短,并求出最短弦長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓
過點(diǎn)
,且圓心在直線
上.
(1)求圓
的方程;
(2)平面上有兩點(diǎn)
,點(diǎn)
是圓
上的動(dòng)點(diǎn),求
的最小值;
(3)若
是
軸上的動(dòng)點(diǎn),
分別切圓
于
兩點(diǎn),試問:直線
是否恒過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓E:
,若橢圓上一點(diǎn)與其中心及長(zhǎng)軸一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)如圖,若直線l與橢圓相交于AB且AB是圓
的一條直徑,求橢圓E的標(biāo)準(zhǔn)方程.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
分別是雙曲線
的左、右焦點(diǎn),過點(diǎn)
作垂直與
軸的直線交雙曲線于
,
兩點(diǎn),若
為銳角三角形,則雙曲線的離心率的取值范圍是_______.
【答案】![]()
【解析】
根據(jù)雙曲線的通徑求得
點(diǎn)的坐標(biāo),將三角形
為銳角三角形,轉(zhuǎn)化為
,即
,將表達(dá)式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據(jù)雙曲線的通徑可知
,由于三角形
為銳角三角形,結(jié)合雙曲線的對(duì)稱性可知
,故
,即
,即
,解得
,故離心率的取值范圍是
.
【點(diǎn)睛】
本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對(duì)稱性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.本小題的主要突破口在將三角形
為銳角三角形,轉(zhuǎn)化為
,利用
列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達(dá)式,解不等式求得雙曲線離心率的取值范圍.
【題型】填空題
【結(jié)束】
17
【題目】已知命題
:方程
有兩個(gè)不相等的實(shí)數(shù)根;命題
:不等式
的解集為
.若
或
為真,
為假,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com