科目: 來源: 題型:
【題目】在平行四邊形
中,
,
,
,
是EA的中點(如圖1),將
沿CD折起到圖2中
的位置,得到四棱錐是
.
![]()
(1)求證:
平面PDA;
(2)若PD與平面ABCD所成的角為
.且
為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方體
的棱長為1,P是空間中任意一點,下列正確命題的個數(shù)是( )
![]()
①若P為棱
中點,則異面直線AP與CD所成角的正切值為
;
②若P在線段
上運動,則
的最小值為
;
③若P在半圓弧CD上運動,當三棱錐
的體積最大時,三棱錐
外接球的表面積為
;
④若過點P的平面
與正方體每條棱所成角相等,則
截此正方體所得截面面積的最大值為![]()
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】2019冠狀病毒病(CoronaVirus Disease2019(COVID-19))是由新型冠狀病毒(2019-nCoV)引發(fā)的疾病,目前全球感染者以百萬計,我國在黨中央、國務院、中央軍委的堅強領(lǐng)導下,已經(jīng)率先控制住疫情,但目前疫情防控形勢依然嚴峻,湖北省中小學依然延期開學,所有學生按照停課不停學的要求,居家學習.小李同學在居家學習期間,從網(wǎng)上購買了一套高考數(shù)學沖刺模擬試卷,快遞員計劃在下午4:00~5:00之間送貨到小區(qū)門口的快遞柜中,小李同學父親參加防疫志愿服務,按規(guī)定,他換班回家的時間在下午4:30~5:00,則小李父親收到試卷無需等待的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線
的參數(shù)方程為
(其中
為參數(shù)),以原點為極點,以
軸為極軸建立極坐標系,曲線
的極坐標方程為
(
為常數(shù),且
),直線
與曲線
交于
兩點.
(1)若
,求實數(shù)
的值;
(2)若點
的直角坐標為
,且
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
在
,
上單調(diào)遞增,求實數(shù)
的取值范圍;
(2)若函數(shù)
在
處的切線平行于
軸,是否存在整數(shù)
,使不等式
在
時恒成立?若存在,求出
的最大值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓
:
的左、右焦點分別為
,橢圓
上一點
與兩焦點構(gòu)成的三角形的周長為6,離心率為
,
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
的直線
交橢圓
于
兩點,問在
軸上是否存在定點
,使得
為定值?證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學從甲乙兩個教師所教班級的學生中隨機抽取100人,每人分別對兩個教師進行評分,滿分均為100分,整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組:
,
,
,
,
,
.得到甲教師的頻率分布直方圖,和乙教師的頻數(shù)分布表:
![]()
乙教師分數(shù)頻數(shù)分布表 | |
分數(shù)區(qū)間 | 頻數(shù) |
| 3 |
| 3 |
| 15 |
| 19 |
| 35 |
| 25 |
(1)在抽樣的100人中,求對甲教師的評分低于70分的人數(shù);
(2)從對乙教師的評分在
范圍內(nèi)的人中隨機選出2人,求2人評分均在
范圍內(nèi)的概率;
(3)如果該校以學生對老師評分的平均數(shù)是否大于80分作為衡量一個教師是否可評為該年度該校優(yōu)秀教師的標準,則甲、乙兩個教師中哪一個可評為年度該校優(yōu)秀教師?(精確到0.1)
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,曲線
的參數(shù)方程為
(t為參數(shù),
).在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(1)求
和
的普通方程;
(2)若直線l的極坐標方程為
,其中
滿足
,若曲線
和
的公共點均在l上,求
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com