科目: 來源: 題型:
【題目】已知橢圓
的離心率為
,過定點(diǎn)
的直線l與橢圓E相交于A,B兩點(diǎn),C為橢圓的左頂點(diǎn),當(dāng)直線l過點(diǎn)
時(shí),
(O為坐標(biāo)原點(diǎn))的面積為
.
(1)求橢圓E的方程;
(2)求證:當(dāng)直線l不過C點(diǎn)時(shí),
為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,我國(guó)電子商務(wù)行業(yè)迎來了蓬勃發(fā)展的新機(jī)遇,但是電子商務(wù)行業(yè)由于缺乏監(jiān)管,服務(wù)質(zhì)量有待提高.某部門為了對(duì)本地的電商行業(yè)進(jìn)行有效監(jiān)管,調(diào)查了甲、乙兩家電商的某種同類產(chǎn)品連續(xù)十天的銷售額(單位:萬元),得到如下莖葉圖:
甲 | 乙 | |||||
7 | 5 | 10 | 7 | |||
9 | 5 | 3 | 11 | 5 | 7 | 8 |
8 | 6 | 12 | 3 | 5 | ||
4 | 2 | 13 | 2 | 6 | 9 | |
1 | 14 | 8 | ||||
(1)根據(jù)莖葉圖判斷甲、乙兩家電商對(duì)這種產(chǎn)品的銷售誰更穩(wěn)定些?
(2)為了綜合評(píng)估本地電商的銷售情況,從甲、乙兩家電商十天的銷售數(shù)據(jù)中各抽取兩天的銷售數(shù)據(jù),其中銷售額不低于120萬元的天數(shù)分別記為
,令
,求隨機(jī)變量Y的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐
中,平面
平面
,
,
,
,
,
為棱
上一動(dòng)點(diǎn),點(diǎn)
是
的中點(diǎn).
![]()
(1)求證:
;
(2)若
,問是否存在點(diǎn)E,使得二面角
的余弦值為
?若存在,求出點(diǎn)E的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術(shù)》中有一題:今有牛、馬、羊食人苗,苗主責(zé)之粟四斗.羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?其意是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償4斗粟,羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比率償還,牛、馬、羊的主人各應(yīng)賠償多少粟?在這個(gè)問題中,牛主人比羊主人多賠償了多少斗( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長(zhǎng)等于2正方形
中,點(diǎn)Q是
中點(diǎn),點(diǎn)M,N分別在線段
上移動(dòng)(M不與A,B重合,N不與C,D重合),且
,沿著
將四邊形
折起,使得二面角
為直二面角,則三棱錐
體積的最大值為________;當(dāng)三棱錐
體積最大時(shí),其外接球的表面積為________.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求曲線
與
的公切線方程:
(2)若
有兩個(gè)極值點(diǎn)
,
,且
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
:
的左、右頂點(diǎn)分別為C、D,且過點(diǎn)
,P是橢圓上異于C、D的任意一點(diǎn),直線PC,PD的斜率之積為
.
(1)求橢圓
的方程;
(2)O為坐標(biāo)原點(diǎn),設(shè)直線CP交定直線x = m于點(diǎn)M,當(dāng)m為何值時(shí),
為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等差數(shù)列
中,已知公差
,
,且
,
,
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)求
.
【答案】(1)
;(2)100
【解析】試題分析:(1)根據(jù)題意
,
,
成等比數(shù)列得
得
求出d即可得通項(xiàng)公式;(2)求項(xiàng)的絕對(duì)前n項(xiàng)和,首先分清數(shù)列有多少項(xiàng)正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),然后正數(shù)項(xiàng)絕對(duì)值數(shù)值不變,負(fù)數(shù)項(xiàng)絕對(duì)值要變號(hào),從而得
,得
,由
,得
,∴
計(jì)算 即可得出結(jié)論
解析:(1)由題意可得,則
,
,
,即
,
化簡(jiǎn)得
,解得
或
(舍去).
∴
.
(2)由(1)得
時(shí),
由
,得
,由
,得
,
∴
![]()
.
∴
.
點(diǎn)睛:對(duì)于數(shù)列第一問首先要熟悉等差和等比通項(xiàng)公式及其性質(zhì)即可輕松解決,對(duì)于第二問前n項(xiàng)的絕對(duì)值的和問題,首先要找到數(shù)列由多少正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而找到絕對(duì)值所影響的項(xiàng),然后在求解即可得結(jié)論
【題型】解答題
【結(jié)束】
18
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請(qǐng)將兩家公司各一名推銷員的日工資
(單位: 元) 分別表示為日銷售件數(shù)
的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為
,乙公司該推銷員的日工資為
(單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖,給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出
的值為( )
![]()
A.80B.192C.448D.36
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
過點(diǎn)
,傾斜角為
.以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程
.
(1)寫出直線
的參數(shù)方程及曲線
的直角坐標(biāo)方程;
(2)若
與
相交于
,
兩點(diǎn),
為線段
的中點(diǎn),且
,求
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com