重慶市萬州區(qū)2009屆高三第一次診斷性
數(shù) 學(xué)(文科)
本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分.全卷共三個(gè)大題,22個(gè)小題,滿分150分,考試時(shí)間為120分鐘.
注意事項(xiàng):
1.答卷前,考生務(wù)必將自己的學(xué)校、班級(jí)、姓名、考號(hào)填寫在答題卷上.
2.第I卷每小題選出答案后,用筆填寫在答題卷上“第I卷答題欄”對(duì)應(yīng)題目的答案欄內(nèi).不能答在試題紙上.
3.第II卷各題一定要做在答題卷限定的區(qū)域內(nèi).
參考公式:
如果事件A、B互斥,那么P(A+B)=P(A)+P(B)
如果事件A、B相互獨(dú)立,那么P(A?B)=P(A)?P(B)
如果事件A在一次試驗(yàn)中發(fā)生的概率是P,那么n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image002.gif)
第I卷(選擇題,共60分)
一、選擇題(本大題共12小題,每小題5分,共60分)在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)把所選答案的番號(hào)填在答題卷的相應(yīng)位置上.
1.函數(shù)
的定義域是( )
(A) R
(B)
(C)
(D)![]()
2.三角函數(shù)式
的值等于( )
(A)
(B)
(C)
(D)![]()
3.設(shè)
、
是直角坐標(biāo)系內(nèi)的兩條直線.已知命題甲:“直線
、
的傾斜角相等”,命題乙:“直線
與
平行”,則命題甲是命題乙的( )
(A)充分不必要條件 (B)必要不充分條件
(C)充要條件 (D)不充分也不必要的條件
4.不等式
的解的集合是( )
(A)
(B)![]()
(C)
(D)
![]()
5.若
,
,且
,則向量
與
的夾角是( )
(A) 30° (B) 60° (C) 45° (D) 75°
6.函數(shù)
的反函數(shù)是( )
(A)
(B) ![]()
(C)
(D) ![]()
7.在下列五個(gè)圖所表示的正方體中,能夠得到AB⊥CD的是( )
(A)①② (B)①②③ (C)①②③④ (D)①②③④⑤
8.某國代表隊(duì)要從6名短跑運(yùn)動(dòng)員中選4人參加2008北京奧運(yùn)會(huì)的4×
(A)24種 (B)72種 (C)144種 (D)360種
9.設(shè)
為橢圓的兩個(gè)焦點(diǎn),A為橢圓上的點(diǎn),若已知
,且
,則橢圓的離心率為( )
(A)
(B)
(C)
(D) ![]()
10.數(shù)列
滿足
,若
,則
的值為( )
(A)
(B)
(C)
(D)
![]()
11.已知函數(shù)
,并且當(dāng)
時(shí),
,則
的圖象的交點(diǎn)個(gè)數(shù)為( )
(A) 2 (B) 3 (C) 4 (D) 5
12.
設(shè)
,已知
,
,那么
的取值范圍為
(A)
(B)
(C)
(D)
![]()
第Ⅱ卷(非選擇題 共90分)
二、填空題(本大題共4小題,每小題4分,共16分)把答案填在答題卷的相應(yīng)位置上.
13.設(shè)全集
,S的子集
.
那么
等于
.
14.如果在
的展開式中的各項(xiàng)系數(shù)之和為128,那么在此展開式中含
的項(xiàng)的系數(shù)是
.
15.若直線
始終平分圓
的圓周,則
的最大值是
.
16.對(duì)任意兩個(gè)實(shí)數(shù)
,定義一種運(yùn)算“
”如下:
,那么函數(shù)
的值域?yàn)?u>
.
三、解答題(本大題共6小題,共74分)把解答題答在答題卷限定的區(qū)域內(nèi).解答應(yīng)寫出文字說明,證明過程或演算步驟.
17.(本題滿分13分)
甲、乙兩顆衛(wèi)星同時(shí)監(jiān)測(cè)臺(tái)風(fēng),根據(jù)長期經(jīng)驗(yàn)得知,甲、乙預(yù)報(bào)臺(tái)風(fēng)準(zhǔn)確的概率分別為0.8和0.75.求:
(1) 在同一次預(yù)報(bào)中,甲、乙兩衛(wèi)星只有一顆預(yù)報(bào)準(zhǔn)確的概率;
(2) 若甲獨(dú)立預(yù)報(bào)4次,至少有3次預(yù)報(bào)準(zhǔn)確的概率.
18.(本題滿分13分)
設(shè)函數(shù)
,其中向量
,![]()
(1)求函數(shù)
的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)
時(shí),求函數(shù)
的值域.
19.(本題滿分12分)
在等比數(shù)列
中,
,并且![]()
(1)求
以及數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求當(dāng)
最大時(shí)
的值.
20.(本題滿分12分)
設(shè)函數(shù)
為奇函數(shù),導(dǎo)函數(shù)
的最小值為-12,函數(shù)
的圖象在點(diǎn)P
處的切線與直線
垂直.
(1)求a,b,c的值;
(2)求
的各個(gè)單調(diào)區(qū)間,并求
在
[-1, 3]時(shí)的最大值和最小值.
21.(本題滿分12分)
已知
是定義域?yàn)閇-3,3]的函數(shù),并且設(shè)
,
,其中常數(shù)c為實(shí)數(shù).
(1)求
和
的定義域;
(2)如果
和
兩個(gè)函數(shù)的定義域的交集為非空集合,求c的取值范圍;
(3)當(dāng)
在其定義域內(nèi)是奇函數(shù),又是增函數(shù)時(shí),求使
的自變量
的取值范圍.
22.(本題滿分12分)
已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線經(jīng)過坐標(biāo)原點(diǎn),并且兩條漸近線與以點(diǎn)
為圓心、1為半徑的圓相切,雙曲線C的一個(gè)焦點(diǎn)與點(diǎn)A關(guān)于直線
對(duì)稱.
(1)求雙曲線C的漸近線和雙曲線的方程;
(2)設(shè)直線
與雙曲線C的左支交于P、Q兩點(diǎn),另一直線
經(jīng)過
及線段PQ的中點(diǎn)N,求直線
在
軸的截距
的取值范圍.
高2009級(jí)第一次診斷性考試(文科)數(shù)學(xué)
一、選擇題(本大題共12小題,每小題5分,共60分)
1~5 D A B D C 6~
二、填空題(本大題共4小題,每小題4分,共16分)
13.
; 14.21 ;
15.
; 16.
.
三、解答題(本大題共6小題,共74分)
17.(本題滿分13分)
解:(1)甲、乙兩衛(wèi)星各自預(yù)報(bào)一次,記“甲預(yù)報(bào)準(zhǔn)確”為事件A,“乙預(yù)報(bào)準(zhǔn)確”為事件B.則兩衛(wèi)星只有一顆衛(wèi)星預(yù)報(bào)準(zhǔn)確的概率為:
… 4分
= 0.8×(1 - 0.75) + (1 - 08)×0.75 = 0.35 …………6分
答:甲、乙兩衛(wèi)星中只有一顆衛(wèi)星預(yù)報(bào)準(zhǔn)確的概率為0.35 ………7分
(2) 甲獨(dú)立預(yù)報(bào)3次,至少有2次預(yù)報(bào)準(zhǔn)確的概率為
…………10分
=
=0.896
………………………12分
答:甲獨(dú)立預(yù)報(bào)3次,至少有2次預(yù)報(bào)準(zhǔn)確的概率為0.896. ……… 13分
18.(本題滿分13分)
解:(1)∵
…………………2分
=
=
……………6分
∴函數(shù)
的最小正周期
…………………7分
又由
可得:
的單調(diào)遞增區(qū)間形如:
……9分
(2) ∵
時(shí),
,
∴
的取值范圍是
………………11分
∴函數(shù)
的最大值是3,最小值是0
從而函數(shù)
的是
…………13分
19.(本題滿分12分)
解:(1) ∵
∴由已知條件可得:
,并且
,
解之得:
,
……………3分
從而其首項(xiàng)
和公比
滿足:2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image249.gif)
2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image251.gif)
………5分
故數(shù)列
的通項(xiàng)公式為:
……6分
(2) ∵
數(shù)列
是等差數(shù)列,
…………………………8分
∴2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image261.gif)
=2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image263.gif)
=
=
…………………10分
由于
,當(dāng)且僅當(dāng)
最大時(shí),
最大.
所以當(dāng)
最大時(shí),
或6 …………………………12分
20.(本題滿分12分)
解:(1) ∵
為奇函數(shù) ∴
………2分
∵
,導(dǎo)函數(shù)
的最小值為-12 ∴
……3分
又∵直線
的斜率為
,
并且
的圖象在點(diǎn)P
處的切線與它垂直
∴
,即
∴
……………6分
(2) 由第(1)小題結(jié)果可得:2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image291.gif)
……………9分
令
,得
……………10分
∵
,
,2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image303.gif)
∴
在
[-1, 3]的最大值為11,最小值為-16. ………12分
21.(本題滿分12分)
解:(1) ∵函數(shù)
有意義的充要條件為
,即是 2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image307.gif)
2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image310.gif)
∴函數(shù)
的定義域?yàn)?sub>
…………3分
∵函數(shù)
有意義的充要條件為:2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image314.gif)
∴函數(shù)
的定義域?yàn)?sub>
…………5分
(2)∵由題目條件知2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image312.gif)
2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image318.gif)
2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image320.gif)
∴
,
…………………7分
∴c的取值范圍是:[-5, 5] …………………8分
(3)
即是2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image326.gif)
∵
是奇函數(shù),∴
………………9分
又∵函數(shù)
的定義域?yàn)?sub>
,并且是增函數(shù)
∴
………………11分
解之得
的取值范圍是:
=
…………12分
22.(本題滿分12分)
解:(1) 設(shè)雙曲線的漸近線方程為
,即
,
∵雙曲線的漸近線與已知的圓相切,圓心到漸近線的距離等于半徑
∴
2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image350.gif)
∴雙曲線的漸近線的方程為:
……………2分
又設(shè)雙曲線的方程為:
,則
∵雙曲線的漸近線的方程為
,且有一個(gè)焦點(diǎn)為2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image356.gif)
∴2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image358.gif)
,
………………4分
解之得:
,故雙曲線的方程是:
……………5分
(2) 聯(lián)立方程組
,消去
得:
(*)…………6分
∵直線與雙曲線C的左支交于兩點(diǎn),方程(*)兩根
、
為負(fù)數(shù),
∴2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image375.gif)
2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image377.gif)
2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image377.gif)
…………8分
又∵線段PQ的中點(diǎn)
坐標(biāo)滿足
,
……9分
∴直線
的方程為:
,
即是
,2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image393.gif)
直線
在
軸的截距
……………………11分
又∵
時(shí),
的取值范圍是:2009屆高三第一次診斷性(數(shù)學(xué)文科).files/image399.gif)
∴直線
的截距
的取值范圍是
……12分
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com