欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  912  920  926  930  936  938  942  948  950  956  962  966  968  972  978  980  986  990  992  996  998  1002  1004  1006  1007  1008  1010  1011  1012  1014  1016  1020  1022  1026  1028  1032  1038  1040  1046  1050  1052  1056  1062  1068  1070  1076  1080  1082  1088  1092  1098  1106  3002 

 平角應(yīng)用四例

徐金星

  1. 延長(zhǎng)線(xiàn)段構(gòu)造平角

    例1  如圖1,AB//CD。求證:

    證明:延長(zhǎng)CE交AB于點(diǎn)F

    因?yàn)锳B//CD          所以C=CFA

   

  2. 過(guò)某點(diǎn)作直線(xiàn)構(gòu)造平角

    例2  如圖2,已知,求證:。

    證明:過(guò)點(diǎn)A作DE//BC,則

   

  3. 過(guò)直線(xiàn)上一點(diǎn)作射線(xiàn)構(gòu)造平角

    例3  如圖3,已知,求證:

    證明:在BC上取一點(diǎn)D(點(diǎn)D不與B、C重合),過(guò)點(diǎn)D分別作DE//AC交AB于E,DF//AB交AC于F

    因?yàn)镈E//AC

    所以1=C,2=4

    因?yàn)镈F//AB          所以4=A

    所以2=A

   

  4. 反向延長(zhǎng)射線(xiàn)構(gòu)造平角

    例4  如圖4,,OD為BOC的平分線(xiàn),OE為BO的延長(zhǎng)線(xiàn)。

    求證:COE=2AOB。

    證明:反向延長(zhǎng)射線(xiàn)AO得射線(xiàn)OF

    因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/3d295a3d85e54ce0b50d6e6bd9a79fec.zip/66806/平角應(yīng)用四例%20專(zhuān)題輔導(dǎo)%20不分版本.files/image005.gif" >AOD為直角,AOF為平角

   

   

 

 

 

 

 

 

試題詳情

 平行線(xiàn)判定和性質(zhì)結(jié)論識(shí)辨

任靜芳

 

    學(xué)習(xí)平行線(xiàn)的判定和性質(zhì)時(shí),對(duì)于如圖1所示的直線(xiàn)a、b被直線(xiàn)c所截的情況,由∠1=∠2得a∥b或者由a∥b得∠2=∠3(或∠2+∠4=180°)很容易接受,但在較復(fù)雜圖形中,則往往弄不清由條件能得出什么結(jié)論。

    問(wèn)題1:如圖2,由∠1=∠2能得AB∥CD還是AD∥BC?

    問(wèn)題2:如圖2,由AB∥CD能得∠1=∠2還是∠3=∠4?

    解析:?jiǎn)栴}1:(1)首先找出已知條件的兩個(gè)角:∠1、∠2。

    (2)其次找出它們的邊,劃掉公共邊(或處在一條直線(xiàn)上的兩邊):

    ∠1的邊    DA,DB

    ∠2的邊    BD,BC

    (3)其余兩邊便是由∠1=∠2推得的兩條平行直線(xiàn)。

    即∵∠1=∠2(已知)

    ∴AD∥BC(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)

    問(wèn)題2:由AB∥CD首先找出AB、CD被哪條直線(xiàn)所截能得到∠1、∠2、∠3、∠4,可以看出這條直線(xiàn)是BD;其次由AB與BD得到∠4而不是∠2,由CD與BD得到∠3而不是∠1。即因?yàn)锳B∥CD,所以∠3=∠4(而不是∠1=∠2)。

    評(píng)注:產(chǎn)生上面兩個(gè)問(wèn)題的原因還是“三線(xiàn)八角”的遺留問(wèn)題,即找出構(gòu)成“八角”的“三線(xiàn)”中的截線(xiàn)是哪條直線(xiàn),就不難找出所需要的角。

 

試題詳情

 平行線(xiàn)分線(xiàn)段成比例定理的應(yīng)用

黃細(xì)把

    平行線(xiàn)分線(xiàn)段成比例定理及其有關(guān)推論,除了證明線(xiàn)段成比例和等積外,還可以證明其他一些線(xiàn)段問(wèn)題。請(qǐng)看如下例題:

  例1. 如圖1,在△ABC中,D為AC上一點(diǎn),E為CB延長(zhǎng)線(xiàn)上一點(diǎn),且。

    求證:AD=EB

    證明:過(guò)D作DG∥AB交BC于G

    ∵DG∥AB,F(xiàn)B∥DG

   

 

  例2. 如圖2,△ABC中,D、F在AB上,且AD=BF,DE∥BC交AC于E,F(xiàn)G∥BC交AC于G。

    求證:DE+FG=BC

    證明:∵DE∥BC,F(xiàn)G∥BC

   

   

   

   

 

  例3. 如圖3,△ABC中,AB=AC,AD⊥BC于D,M為AD的中點(diǎn),CM的延長(zhǎng)線(xiàn)交AB于K。

    求證:AB=3AK

    證明:過(guò)B作BG∥KM交AD延長(zhǎng)線(xiàn)于G

   

    于D

    ∴BD=CD,MD=GD

    ∵AD=2AM

   

 

  例4. 如圖4,△ABC中,D為BC上任一點(diǎn),BE∥AD交CA延長(zhǎng)線(xiàn)于E,CF∥AD交BA延長(zhǎng)線(xiàn)于F。

    求證:

    證明:∵AD∥BE,AD∥CF

   

 

 

試題詳情

 巧用方程組的解的意義解題

吳健

    已知關(guān)于x、y的方程組,有相同的解,求a、b的值。

    分析:既然兩個(gè)方程組的解相同,那么方程的解也應(yīng)該相同;由這兩個(gè)方程可求得x、y的值,然后再代入中,解關(guān)于a、b的二元一次方程組,便可求得a、b的值。

    解:由于有相同的解,所以該相同的解應(yīng)是方程組   (1)與     (2)的解,解方程組(1)得,然后把代入方程組(2),得,解得。故a、b的值分別是2和1。

    同學(xué)們仿此例可利用方程組的解的意義解以下幾題:

  1. 已知關(guān)于x、y的方程組的解相同,求a、b的值。

    (答案:

  2. 若方程組與方程組的解相同。則的值是多少??

    (答案:1)

 

試題詳情

 對(duì)角線(xiàn)互相垂直的四邊形的面積

張現(xiàn)立

    對(duì)角線(xiàn)互相垂直的四邊形的面積等于它的兩條對(duì)角線(xiàn)長(zhǎng)的積的一半。下面我們證明這個(gè)結(jié)論。

    已知:四邊形ABCD中,對(duì)角線(xiàn)于E,如圖1。

    求證:

圖1

    證明:在四邊形ABCD中,于E

    所以

     

    對(duì)于對(duì)角線(xiàn)互相垂直的四邊形的面積求解問(wèn)題,這是一個(gè)十分方便的公式。

  例1. 菱形ABCD的對(duì)角線(xiàn)AC、BD相交于O,的周長(zhǎng)為,求菱形ABCD的面積。(如圖2)

圖2

    解:在菱形ABCD中,

    因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/3d295a3d85e54ce0b50d6e6bd9a79fec.zip/66806/對(duì)角線(xiàn)互相垂直的四邊形的面積%20專(zhuān)題指導(dǎo).files/image018.gif" >,所以

    設(shè),則

    所以

    解得

    所以

    所以

    所以

 

  例2. 等腰梯形ABCD的兩條對(duì)角線(xiàn)互相垂直,垂足為O,梯形的高為a,求梯形ABCD的面積。

    解:設(shè)梯形ABCD的腰為AB、CD,則,BC=CB(如圖3)

圖3

    所以

    所以

    又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/3d295a3d85e54ce0b50d6e6bd9a79fec.zip/66806/對(duì)角線(xiàn)互相垂直的四邊形的面積%20專(zhuān)題指導(dǎo).files/image002.gif" >于O,所以在中,

    過(guò)點(diǎn)D作于E,則為等腰直角三角形,故

    所以

   

  例3. 如圖4,已知:在中,BD和CE分別是兩邊上的中線(xiàn),并且,求的面積。

圖4

    解:連結(jié)DE,則四邊形BCDE的面積為

   

    又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/3d295a3d85e54ce0b50d6e6bd9a79fec.zip/66806/對(duì)角線(xiàn)互相垂直的四邊形的面積%20專(zhuān)題指導(dǎo).files/image067.gif" >

    所以

 

  例4. 如圖5,已知:在邊長(zhǎng)為4cm的正方形ABCD中,取CD的中點(diǎn)E,G在BC上,F(xiàn)在AD上,,求四邊形AGEF的面積。

圖5

    解:在中,

   

    所以

    過(guò)G點(diǎn)作,垂足為H

    因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/3d295a3d85e54ce0b50d6e6bd9a79fec.zip/66806/對(duì)角線(xiàn)互相垂直的四邊形的面積%20專(zhuān)題指導(dǎo).files/image071.gif" >,所以

    從而

    又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/3d295a3d85e54ce0b50d6e6bd9a79fec.zip/66806/對(duì)角線(xiàn)互相垂直的四邊形的面積%20專(zhuān)題指導(dǎo).files/image088.gif" >

    所以

    所以

    故

  例5. 已知梯形ABCD中,,如圖6,求。

圖6

    解:過(guò)D作DE//AC交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,所以四邊形ADEC是平行四邊形。

    所以

    因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/3d295a3d85e54ce0b50d6e6bd9a79fec.zip/66806/對(duì)角線(xiàn)互相垂直的四邊形的面積%20專(zhuān)題指導(dǎo).files/image103.gif" >

   

    所以

    所以

    又因?yàn)镈E//AC,所以

    所以

 

試題詳情

 定義的應(yīng)用

楊志彬

    數(shù)學(xué)概念的學(xué)習(xí)往往容易被忽略,其實(shí)數(shù)學(xué)概念是極其重要的數(shù)學(xué)內(nèi)容,有些概念的定義本身就可以解決一些問(wèn)題,下面舉例說(shuō)明。

    1. 若單項(xiàng)式是同類(lèi)項(xiàng),則=____________。

    2. 若b<0,化簡(jiǎn)。

    3. 若最簡(jiǎn)根式是同類(lèi)二次根式,則m,n的值為_(kāi)_____。

    4. 若,則關(guān)于x的二次方程,必有一根等于_________;若,情況又如何?

    5. 設(shè)反比例函數(shù)的圖象與直線(xiàn)有兩個(gè)交點(diǎn)A、B,求n的值和A、B兩點(diǎn)的坐標(biāo)。

    6. 下列圖象所表示的y與x間的關(guān)系中,y不是x的函數(shù)的有_________。

    提示:

    1. 用同類(lèi)項(xiàng)定義。答案:。

    2. 考察根式的定義。答案:。

    3. 考察最簡(jiǎn)二次根式的定義。答案:6,8。

    4. 考察方程根的定義。答案:1;。

    5. 用反比例函數(shù)定義。

    答案:

    6. 用函數(shù)的定義。答案(B)、(C)。

 

 

 

 

 

 

試題詳情

 完全平方公式變形的應(yīng)用

  姜峰

    完全平方公式是多項(xiàng)式乘法中非常重要的一個(gè)公式。掌握其變形特點(diǎn)并靈活運(yùn)用,可以巧妙地解決很多問(wèn)題。

   一. 完全平方公式常見(jiàn)的變形有

    a2+b2=(a+b)2-2ab,

    a2+b2=(a-b)2+2ab,

    (a+b)2-(a-b)2=4ab,

     a2+b2+c2=(a+b+c)2-2(ab+ac+bc)

  二. 乘法公式變形的應(yīng)用

    例1: 已知:x2+y2+4x-6y+13=0,x、y均為有理數(shù),求xy的值。

    分析:逆用完全乘方公式,將

    x2+y2+4x-6y+13化為兩個(gè)完全平方式的和,利用完全平方式的非負(fù)性求出x與y的值即可。

    解:∵x2+y2+4x-6y+13=0,

    (x2+4x+4)+(y2-6y+9)=0,

    即(x+2)2+(y-3)2=0。

    ∴x+2=0,y=3=0。

    即x=-2,y=3。

    ∴xy=(-2)3=-8。

   

    分析:本題巧妙地利用

   

    例3 已知:a+b=8,ab=16+c2,求(a-b+c)2002的值。

    分析:由已知條件無(wú)法直接求得(a-b+c)2002的值,可利用(a-b)2=(a+b)2-4ab確定a-b與c的關(guān)系,再計(jì)算(a-b+c)2002的值。

    解:(a-b)2=(a+b)2-4ab=82-4(16+c2)=-4c2。

    即:(a-b)2+4c2=0。

    ∴a-b=0,c=0。

    ∴(a-b+c)2002=0。

    例4 已知:a、b、c、d為正有理數(shù),且滿(mǎn)足a4+b4+C4+D4=4abcd。

    求證:a=b=c=d。

    分析:從a4+b4+C4+D4=4abcd的特點(diǎn)看出可以化成完全平方形式,再尋找證明思路。

    證明:∵a4+b4+C4+D4=4abcd,

    ∴a4-2a2b2+b4+c4-2c2d2+d4+2a2b2-4abcd+2c2d2=0,

    (a2-b22+(c2-d22+2(ab-cd)2=0。

     a2-b2=0,c2-d2=0,ab-cd=0

    又∵a、b、c、d為正有理數(shù),

    ∴a=b,c=d。代入ab-cd=0,

    得a2=c2,即a=c。

    所以有a=b=c=d。

    練習(xí):

    1. 已知:x2+3x+1=0。

   

    2. 已知x,y,z滿(mǎn)足條件

   

    求:(1)x2+y2+z2

    (2)x4+y4+z4的值

    3. 已知:x=a2+b2,y=c2+d2。

    求證:x,y可表示成平方和的形式。

    4. 已知:ad-bc=1

    求證:a2+b2+c2+d2+ad+cd≠1。  

 

 

 

 

試題詳情

 學(xué)好與用好冪的法則

于 波

 

(接上期)

試題詳情

 學(xué)習(xí)有理數(shù)加減三注意

盧守銀

 

    有理數(shù)的加減是初一代數(shù)的一個(gè)難點(diǎn)。學(xué)習(xí)時(shí),應(yīng)注意以下三點(diǎn):

試題詳情

 如何學(xué)好絕對(duì)值

朱永年

 

    絕對(duì)值是中學(xué)數(shù)學(xué)的一個(gè)重要概念,學(xué)好它非常重要。要學(xué)好絕對(duì)值,除了熟練掌握正負(fù)數(shù)、相反數(shù)和絕對(duì)值的性質(zhì)外,還應(yīng)掌握絕對(duì)值的幾何意義,具體來(lái)說(shuō)要注意以下幾點(diǎn)。

試題詳情


同步練習(xí)冊(cè)答案