科目:czsx 來(lái)源: 題型:
| 隊(duì)名 | 比賽場(chǎng)次 | 勝場(chǎng) | 負(fù)場(chǎng) | 積分 |
| 前進(jìn) | 14 | 10 | 4 | 24 |
| 東方 | 10 | 4 | 4 | 24 |
| 光明 | 14 | 9 | 5 | 23 |
| 藍(lán)天 | 14 | 9 | 5 | 23 |
| 雄鷹 | 14 | 7 | 7 | 21 |
| 遠(yuǎn)大 | 14 | 7 | 7 | 21 |
| 衛(wèi)星 | 14 | 4 | 10 | 18 |
| 鋼鐵 | 14 | 0 | 14 | 14 |
科目:czsx 來(lái)源: 題型:
科目:czsx 來(lái)源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(河北) 題型:解答題
運(yùn)算求解(本小題滿分10分)
解方程或不等式組;
(1)
(2)![]()
科目:czsx 來(lái)源: 題型:
(本小題滿分10分)
數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來(lái)闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來(lái)闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。
如浙教版九上課本第109頁(yè)作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:(1)AC·BC = AB·CD (2)AC2= AD·AB
(1)請(qǐng)你用數(shù)形結(jié)合的“以數(shù)解形”思想來(lái)解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長(zhǎng)。
(2)請(qǐng)你用數(shù)形結(jié)合的“以形助數(shù)”思想來(lái)解: 設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)
科目:czsx 來(lái)源:2011-2012學(xué)年江蘇揚(yáng)中市九年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
運(yùn)算求解(本小題滿分10分)
(1)解不等式
,并把它的解集在數(shù)軸上表示出來(lái).
(2)解方程:
科目:czsx 來(lái)源:2012屆江蘇揚(yáng)中市九年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
運(yùn)算求解(本小題滿分10分)
(1)解不等式
,并把它的解集在數(shù)軸上表示出來(lái).
(2)解方程:
科目:czsx 來(lái)源: 題型:
科目:czsx 來(lái)源:2012屆江蘇省丹陽(yáng)市九年級(jí)下學(xué)期第一次質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:選擇題
(本小題滿分10分)解方程或不等式組:
⑴ 解方程:
科目:czsx 來(lái)源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(江蘇泰州) 題型:解答題
(本小題滿分10分)解方程:
(1)
;
(2)![]()
科目:czsx 來(lái)源:2011學(xué)年河北省考模擬考試數(shù)學(xué)卷 題型:選擇題
(本小題滿分10分)
數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來(lái)闡明形的某些屬性,即 “以數(shù)解形”;或者借助形的幾何直觀性來(lái)闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。
如浙教版九上課本第109頁(yè)作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:(1)AC·BC = AB·CD (2)AC2= AD·AB
(1)請(qǐng)你用數(shù)形結(jié)合的“以數(shù)解形”思想來(lái)解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長(zhǎng)。
(2)請(qǐng)你用數(shù)形結(jié)合的“以形助數(shù)”思想來(lái)解: 設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)
科目:czsx 來(lái)源:2010-2011年江蘇省常州實(shí)驗(yàn)初級(jí)中學(xué)九年級(jí)第二學(xué)期模擬考試數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)解不等式組或方程
【小題1】(1)
【小題2】(2)![]()
科目:czsx 來(lái)源:2011年南京市溧水縣中考數(shù)學(xué)一模試卷 題型:解答題
【改編】(本小題滿分10分)
數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來(lái)闡明形的某些屬性,即“以數(shù)解形”;或者借助形的
幾何直觀性來(lái)闡明數(shù)之間的某種關(guān)系,即“以形助數(shù)”。 如浙教版九上課本第109頁(yè)作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:(1)AC·BC = AB·CD (2)AC2= AD·AB
(1)請(qǐng)你用數(shù)形結(jié)合的“以數(shù)解形”思想來(lái)解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長(zhǎng)。
(2)請(qǐng)你用數(shù)形結(jié)合的“以形助數(shù)”思想來(lái)解:設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)![]()
![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com