知數(shù)集M滿足條件若a屬于M,1-a分之1+a屬于M[a不=+-1,a不=0]答案解析
科目:czsx
來源:
題型:
已知:拋物線y=ax
2+bx+c的對稱軸為x=
且經(jīng)過點(diǎn)C(0,-3)和點(diǎn)F(3,
-2).
(1)求拋物線的解析式:
(2)如圖1,設(shè)拋物線y=ax
2+bx+c與x 軸交于A、B兩點(diǎn),與y 軸交于點(diǎn)C,過A、B、C三點(diǎn)的⊙M交y 軸于另一點(diǎn)D,連接AD、DB,設(shè)∠CDB=α,∠ADC=β,求cos(α-β)的值;
(3)如圖2,作∠CDB的平分線DE交⊙M于點(diǎn)E,連接BE,問:在坐標(biāo)軸上是否存在點(diǎn)P,使得以P、D、E為頂點(diǎn)的三角形與△DEB相似.若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo)(不包括點(diǎn)B);若不存在,請說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax
2-2ax+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,連接CD、CB,問拋物線上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)K為拋物線上C關(guān)于對稱軸的對稱點(diǎn),點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:czsx
來源:2012年湖北省武漢市中考數(shù)學(xué)模擬試卷(八)(解析版)
題型:解答題
在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax
2-2ax+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,連接CD、CB,問拋物線上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)K為拋物線上C關(guān)于對稱軸的對稱點(diǎn),點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:解答題
在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2-2ax+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,連接CD、CB,問拋物線上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)K為拋物線上C關(guān)于對稱軸的對稱點(diǎn),點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:
(本題滿分12分)在平面直角坐標(biāo)系
中,已知二次函數(shù)
的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,連接CD、CB,問拋物線上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)K拋物線上C關(guān)于對稱軸的對稱點(diǎn),點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由
查看答案和解析>>
科目:czsx
來源:江蘇省蘇州市高新區(qū)2013屆七年級下學(xué)期期末考試數(shù)學(xué)試題
題型:解答題
(本題滿分12分)在平面直角坐標(biāo)系
中,已知二次函數(shù)
的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,連接CD、CB,問拋物線上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)K拋物線上C關(guān)于對稱軸的對稱點(diǎn),點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由
查看答案和解析>>
科目:czsx
來源:2010年湖北省武漢市中考數(shù)學(xué)模擬試卷(17)(解析版)
題型:解答題
已知:拋物線y=ax
2+bx+c的對稱軸為x=

且經(jīng)過點(diǎn)C(0,-3)和點(diǎn)F(3,

).
(1)求拋物線的解析式:
(2)如圖1,設(shè)拋物線y=ax
2+bx+c與x 軸交于A、B兩點(diǎn),與y 軸交于點(diǎn)C,過A、B、C三點(diǎn)的⊙M交y 軸于另一點(diǎn)D,連接AD、DB,設(shè)∠CDB=α,∠ADC=β,求cos(α-β)的值;
(3)如圖2,作∠CDB的平分線DE交⊙M于點(diǎn)E,連接BE,問:在坐標(biāo)軸上是否存在點(diǎn)P,使得以P、D、E為頂點(diǎn)的三角形與△DEB相似.若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo)(不包括點(diǎn)B);若不存在,請說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:
(本題滿分12分)在平面直角坐標(biāo)系

中,已知二次函數(shù)

的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,連接CD、CB,問拋物線上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)點(diǎn)K拋物線上C關(guān)于對稱軸的對稱點(diǎn),點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由
查看答案和解析>>
科目:czsx
來源:江蘇省蘇州市高新區(qū)2010-2011學(xué)年七年級下學(xué)期期末考試數(shù)學(xué)試題
題型:解答題
查看答案和解析>>
科目:czsx
來源:
題型:解答題
已知:拋物線y=ax2+bx+c的對稱軸為x=
且經(jīng)過點(diǎn)C(0,-3)和點(diǎn)F(3,
).
(1)求拋物線的解析式:
(2)如圖1,設(shè)拋物線y=ax2+bx+c與x 軸交于A、B兩點(diǎn),與y 軸交于點(diǎn)C,過A、B、C三點(diǎn)的⊙M交y 軸于另一點(diǎn)D,連接AD、DB,設(shè)∠CDB=α,∠ADC=β,求cos(α-β)的值;
(3)如圖2,作∠CDB的平分線DE交⊙M于點(diǎn)E,連接BE,問:在坐標(biāo)軸上是否存在點(diǎn)P,使得以P、D、E為頂點(diǎn)的三角形與△DEB相似.若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo)(不包括點(diǎn)B);若不存在,請說明理由.

查看答案和解析>>
科目:czsx
來源:
題型:

如圖:直角梯形ABCD中,AD∥BC,AD<BC,∠B=90°,AB=7,BC-AD=1.以CD為直徑的圓O與AB有兩個不同的公共點(diǎn)E、F,與BC交于點(diǎn)G.
(1)求⊙O的半徑;
(2)求證:AE=BF;
(3)當(dāng)AE=1時,在線段AB上是否存在點(diǎn)P,以點(diǎn)A,P,D為頂點(diǎn)的三角形與以點(diǎn)B,P,C為頂點(diǎn)的三角形相似?若存在,在圖中描出所有滿足條件的點(diǎn)P的位置(不要求計算);若不存在,請說理由.
(4)當(dāng)AE為何值時,能滿足(3)中條件的點(diǎn)P有且只有兩個?
查看答案和解析>>
科目:czsx
來源:
題型:
已知:二次函數(shù)y=x
2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-3,0),與y軸

交于點(diǎn)C,點(diǎn)D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點(diǎn)P,求出PA+PD的最小值;
(3)點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)E,使B、D、E、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,拋物線y=x
2-2x-3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),直線l與拋物線交于A,C兩點(diǎn),其中點(diǎn)C的橫坐標(biāo)為2.
(1)求A,B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個動點(diǎn)(P與A,C不重合),過P點(diǎn)作y軸的平行線交拋物線于點(diǎn)E,求△ACE面積的最大值;
(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點(diǎn)D,直線AC與y軸交于點(diǎn)Q,點(diǎn)M為直線PE上一動點(diǎn),則在x軸上是否存在一點(diǎn)N,使四邊形DMNQ的周長最?。咳舸嬖?,求出這個最小值及點(diǎn)M,N的坐標(biāo);若不存在,請說明理由.
(4)點(diǎn)H是拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、H四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:
如圖,拋物線
y=-x2+bx+c與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于

點(diǎn)C,對稱軸為直線
x=,OA=2,OD平分∠BOC交拋物線于點(diǎn)D(點(diǎn)D在第一象限).
(1)求拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)在拋物線的對稱軸上,是否存在一點(diǎn)P,使得△BPD的周長最?。咳舸嬖?,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)點(diǎn)M是拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)N,使A、D、M、N四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的M點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:
一個兩位數(shù)
加上互換位置后的兩位數(shù)
,所得之和恰好一個完全平方數(shù),滿足條件的兩位數(shù)共有
個.
查看答案和解析>>
科目:czsx
來源:
題型:
如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,
)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.

(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).
查看答案和解析>>
科目:czsx
來源:第34章《二次函數(shù)》中考題集(38):34.4 二次函數(shù)的應(yīng)用(解析版)
題型:解答題
如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,

)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).
查看答案和解析>>
科目:czsx
來源:2009年浙江省紹興市紹興縣蘭亭鎮(zhèn)中數(shù)學(xué)中考模擬試卷(解析版)
題型:解答題
(2008•南平)如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,

)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).
查看答案和解析>>
科目:czsx
來源:2009年浙江省溫州市外國語學(xué)校一模試卷(解析版)
題型:解答題
(2008•南平)如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,

)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).
查看答案和解析>>
科目:czsx
來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(35):20.5 二次函數(shù)的一些應(yīng)用(解析版)
題型:解答題
如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,

)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).
查看答案和解析>>