欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網(wǎng) > 試題搜索列表 >問題提出:

問題提出:答案解析

科目:czsx 來源: 題型:

問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定它們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知小麗和小穎購買同一種商品的平均價格分別為
a+b
2
元/千克和
2ab
a+b
元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價格的高低.
(2)試比較圖2和圖3中兩個矩形周長M1、N1的大?。╞>c).
精英家教網(wǎng)
聯(lián)系拓廣
小剛在超市里買了一些物品,用一個長方體的箱子“打包”,這個箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,問哪種方法用繩最短?哪種方法用繩最長?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:czsx 來源: 題型:

問題提出:如何把一個三角形分割成n(n≥9)個小正三角形?
為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個正三角形分割成4個小正三角形,即在原來1個正三角形的基礎(chǔ)上增加了3個正三角形.
基本分割法2:如圖②,把一個正三角形分割成6個小正三角形,即在原來1個正三角形的基礎(chǔ)上增加了5個正三角形.

問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正三角形分割成n(n≥9)個小正三角形.
(1)把一個正三角形分割成9個小正三角形.
①請你在基本分割法1基礎(chǔ)上把答題卷上圖③的正三角形分割成9個正三角形;
②請你在基本分割法2基礎(chǔ)上把答題卷上圖④的正三角形分割成9個正三角形;
(2)把答題卷上圖⑤的正三角形分割成10個小正三角形.
(3)請你參照上述分割方法,把答題卷上圖⑥給出的正三角形分割成11個小正三角形
注意:本題以上所有解答,用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法.
(4)請你簡要敘述把一個正三角形分割成n(n≥9)個小正三角形的方法.

查看答案和解析>>

科目:czsx 來源: 題型:閱讀理解

問題提出:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個點(diǎn)為頂點(diǎn),可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手,通過觀察、分析,最后歸納出結(jié)論:
探究一:以△ABC的三個頂點(diǎn)和它內(nèi)部的一個點(diǎn)P,共4個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個互不重疊的小三角形?
如圖(1),顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的三個頂點(diǎn)和它內(nèi)部的2個點(diǎn)P、Q,共5個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個互不重疊的小三角形?

在探究一的基礎(chǔ)上,我們可看作在圖(1)△ABC的內(nèi)部,再添加1個點(diǎn)Q,那么點(diǎn)Q的位置會有兩種情況:一種情況,點(diǎn)Q在圖(1)分割成的某個小三角形內(nèi)部,不妨假設(shè)點(diǎn)Q在△PAC內(nèi)部,如圖(2);另一種情況,點(diǎn)Q在圖(1)分割成的小三角形的某條公共邊上,不妨假設(shè)點(diǎn)Q在P上,如圖(3);顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.
探究三:以△ABC的三個頂點(diǎn)和它內(nèi)部的3個點(diǎn),共6個點(diǎn)為頂點(diǎn)可把△ABC分割成
7
7
個互不重疊的小三角形.
探究四:以△ABC的三個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+3)個點(diǎn)為頂點(diǎn)可把△ABC分割成
3+2(m-1)或2m+1
3+2(m-1)或2m+1
個互不重疊的小三角形.
探究拓展:以四邊形的4個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+4)個點(diǎn)為頂點(diǎn),可把四邊形分割成
4+2(m-1)或2m+2
4+2(m-1)或2m+2
個互不重疊的小三角形.
問題解決:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個點(diǎn)為頂點(diǎn),可把△ABC分割成
n+2(m-1)或2m+n-
n+2(m-1)或2m+n-
個互不重疊的小三角形.
實際應(yīng)用:以八邊形的8個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+8)個點(diǎn)為頂點(diǎn),可把八邊形分割成2013個互不重疊的小三角形嗎?若行,求出m的值;若不行,請說明理由.

查看答案和解析>>

科目:czsx 來源: 題型:

問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.
基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.
問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形.
(1)把一個正方形分割成9個小正方形.
①請你在基本分割法1基礎(chǔ)上把答題卷上圖③的正方形分割成9個正方形;
②請你在基本分割法2基礎(chǔ)上把答題卷上圖④的正方形分割成9個正方形;
(2)把答題卷上圖⑤的正方形分割成10個小正方形.
(3)請你參照上述分割方法,把答題卷上圖⑥給出的正方形分割成11個小正方形.
注意:本題以上所有解答,用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法
(4)請你簡要敘述把一個正方形分割成n(n≥9)個小正方形的方法.

查看答案和解析>>

科目:czsx 來源: 題型:

問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
試比較圖1和圖2中兩個矩形周長M1、N1的大小(b>c).

查看答案和解析>>

科目:gzhx 來源: 題型:

問題提出:小王同學(xué)有次實驗時把SO2通入裝有BaCl2、FeCl3的混合溶液的試管中,出現(xiàn)了白色渾濁物.
假設(shè)、驗證:
假設(shè) 實驗驗證方法及現(xiàn)象
假設(shè)1 白色渾濁物是BaSO3 (1)
在白色渾濁物中加入過量鹽酸,會變澄清
在白色渾濁物中加入過量鹽酸,會變澄清

假設(shè)2
(2)白色渾濁物是BaSO4,主要
原因是
Fe3+氧化了水中的SO2,在Ba2+作用下,生成BaSO4
Fe3+氧化了水中的SO2,在Ba2+作用下,生成BaSO4

反應(yīng)開始前,先向制取SO2的裝置中通入純凈的CO2,再把產(chǎn)生的SO2通入BaCl2溶液中,不出現(xiàn)渾濁.滴加FeCl3溶液后出現(xiàn)渾濁
(3)通入純凈的CO2的目的
防止制備的SO2氣體中混有空氣(O2)對說明Fe3+氧化SO2造成干擾
防止制備的SO2氣體中混有空氣(O2)對說明Fe3+氧化SO2造成干擾
請把上表填充完全.
(4)寫出SO2通入BaCl2、FeCl3的混合溶液生成沉淀相關(guān)的離子方程式.
SO2+2Fe3++2H2O=SO42-+2Fe2++4H+、Ba2++SO42-=BaSO4
SO2+2Fe3++2H2O=SO42-+2Fe2++4H+、Ba2++SO42-=BaSO4

查看答案和解析>>

科目:czsx 來源:2011年山東省青島中考數(shù)學(xué)試題 題型:059

問題提出

我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差MN,若MN>0,則MN;若MN=0,則MN;若MN<0,則MN

問題解決

如圖,把邊長為ab(ab)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

解:由圖可知:Ma2b2,N=2ab

MNa2b2-2ab=(ab)2

ab,∴(ab)2>0.

MN>0.

MN

類別應(yīng)用

(1)已知小麗和小穎購買同一種商品的平均價格分別為元/千克和元/千克(a、b是正數(shù),且ab),試比較小麗和小穎所購買商品的平均價格的高低.

(2)試比較圖1和圖2中兩個矩形周長M1、N1的大小(bc).

聯(lián)系拓廣

小剛在超市里買了一些物品,用一個長方體的箱子“打包”,這個箱子的尺寸如圖1所示(其中bac>0),售貨員分別可按圖2、圖3、圖4三種方法進(jìn)行捆綁,吻哪種方法用繩最短?哪種方法用繩最長?請說明理由.

查看答案和解析>>

科目:czsx 來源: 題型:閱讀理解

問題提出

我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大?。?/p>

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類比應(yīng)用

1.已知:多項式M =2a2-a+1 ,N =a2-2a .試比較M與N的大?。?/p>

2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊

滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個頂

點(diǎn)為長方形的兩個端點(diǎn),第三個頂點(diǎn)落在長方形的這一邊的對邊上。                     

     ①這樣的長方形可以畫       個;

②所畫的長方形中哪個周長最???為什么?

拓展延伸                                                                                                                               

     已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

 

 

查看答案和解析>>

科目:czsx 來源: 題型:閱讀理解

問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大?。?br />
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
【小題1】已知:多項式M =2a2-a+1 ,N =a2-2a.試比較M與N的大?。?br />【小題2】已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個頂
點(diǎn)為長方形的兩個端點(diǎn),第三個頂點(diǎn)落在長方形的這一邊的對邊上。                     
①這樣的長方形可以畫       個;
②所畫的長方形中哪個周長最???為什么?

拓展延伸                                                                                               
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:czsx 來源:2012屆江蘇鹽城鹽都區(qū)九年級下學(xué)期期中質(zhì)量檢測數(shù)學(xué)試卷(帶解析). 題型:解答題

問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大?。?br />
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
【小題1】已知:多項式M =2a2-a+1 ,N =a2-2a.試比較M與N的大小.
【小題2】已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個頂
點(diǎn)為長方形的兩個端點(diǎn),第三個頂點(diǎn)落在長方形的這一邊的對邊上。                     
①這樣的長方形可以畫       個;
②所畫的長方形中哪個周長最???為什么?

拓展延伸                                                                                               
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:czsx 來源:2012年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(帶解析) 題型:解答題

問題提出:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個點(diǎn)作為頂
點(diǎn),可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手:
探究一:以△ABC的3個頂點(diǎn)和它內(nèi)部的1個點(diǎn)P,共4個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個互
不重疊的小三角形?如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的3個頂點(diǎn)和它內(nèi)部的2個點(diǎn)P、Q,共5個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個
互不重疊的小三角形?
在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個點(diǎn)Q,那么點(diǎn)Q的位置會有兩種
情況:
一種情況,點(diǎn)Q在圖①分割成的某個小三角形內(nèi)部.不妨設(shè)點(diǎn)Q在△PAC的內(nèi)部,如圖②;
另一種情況,點(diǎn)Q在圖①分割成的小三角形的某條公共邊上.不妨設(shè)點(diǎn)Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.
探究三:以△ABC的三個頂點(diǎn)和它內(nèi)部的3個點(diǎn)P、Q、R,共6個點(diǎn)為頂點(diǎn),可把△ABC分割成     
互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+3)個點(diǎn)為頂點(diǎn),可把△ABC分割成       
互不重疊的小三角形.
探究拓展:以四邊形的4個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+4)個點(diǎn)為頂點(diǎn),可把四邊形分割成
       個互不重疊的小三角形.
問題解決:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個點(diǎn)作為頂點(diǎn),可把原n邊形分割成
       個互不重疊的小三角形.
實際應(yīng)用:以八邊形的8個頂點(diǎn)和它內(nèi)部的2012個點(diǎn),共2020個頂點(diǎn),可把八邊形分割成多少個互
不重疊的小三角形?(要求列式計算)

查看答案和解析>>

科目:czsx 來源:2012年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(解析版) 題型:解答題

問題提出:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個點(diǎn)作為頂

點(diǎn),可把原n邊形分割成多少個互不重疊的小三角形?

問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手:

探究一:以△ABC的3個頂點(diǎn)和它內(nèi)部的1個點(diǎn)P,共4個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個互

不重疊的小三角形?如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.

探究二:以△ABC的3個頂點(diǎn)和它內(nèi)部的2個點(diǎn)P、Q,共5個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個

互不重疊的小三角形?

在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個點(diǎn)Q,那么點(diǎn)Q的位置會有兩種

情況:

一種情況,點(diǎn)Q在圖①分割成的某個小三角形內(nèi)部.不妨設(shè)點(diǎn)Q在△PAC的內(nèi)部,如圖②;

另一種情況,點(diǎn)Q在圖①分割成的小三角形的某條公共邊上.不妨設(shè)點(diǎn)Q在PA上,如圖③.

顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.

探究三:以△ABC的三個頂點(diǎn)和它內(nèi)部的3個點(diǎn)P、Q、R,共6個點(diǎn)為頂點(diǎn),可把△ABC分割成     

互不重疊的小三角形,并在圖④中畫出一種分割示意圖.

探究四:以△ABC的三個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+3)個點(diǎn)為頂點(diǎn),可把△ABC分割成       

互不重疊的小三角形.

探究拓展:以四邊形的4個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+4)個點(diǎn)為頂點(diǎn),可把四邊形分割成

        個互不重疊的小三角形.

問題解決:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個點(diǎn)作為頂點(diǎn),可把原n邊形分割成

        個互不重疊的小三角形.

實際應(yīng)用:以八邊形的8個頂點(diǎn)和它內(nèi)部的2012個點(diǎn),共2020個頂點(diǎn),可把八邊形分割成多少個互

不重疊的小三角形?(要求列式計算)

 

查看答案和解析>>

科目:czsx 來源:2011-2012學(xué)年江蘇鹽城鹽都區(qū)九年級下學(xué)期期中質(zhì)量檢測數(shù)學(xué)試卷(解析版). 題型:解答題

問題提出

我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大?。?/p>

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類比應(yīng)用

1.已知:多項式M =2a2-a+1 ,N =a2-2a .試比較M與N的大?。?/p>

2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊

滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個頂

點(diǎn)為長方形的兩個端點(diǎn),第三個頂點(diǎn)落在長方形的這一邊的對邊上。                     

      ①這樣的長方形可以畫        個;

②所畫的長方形中哪個周長最?。繛槭裁??

拓展延伸                                                                                                                               

     已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

 

 

查看答案和解析>>

科目:czsx 來源:不詳 題型:解答題

問題提出:如圖①,將一張直角三角形紙片折疊,使點(diǎn)與點(diǎn)重合,這時為折痕,為等腰三角形;再繼續(xù)將紙片沿的對稱軸折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內(nèi)接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.

知識運(yùn)用:
(1)如圖②,正方形網(wǎng)格中的能折疊成“疊加矩形”嗎?如果能,請在圖②中畫出折痕;
(2)如圖③,在正方形網(wǎng)格中,以給定的為一邊,畫出一個斜三角形,使其頂點(diǎn)在格點(diǎn)上,且折成的“疊加矩形”為正方形;
(3)若一個銳角三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是什么?結(jié)合圖③,說明理由。
拓展應(yīng)用:
(4)如果一個四邊形一定能折成"疊加矩形",那么它必須滿足的條件是什么?

查看答案和解析>>

科目:czsx 來源:2013-2014學(xué)年山東青島平度古峴鎮(zhèn)古峴中學(xué)九年級下學(xué)期階段性質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

問題提出:如圖①,將一張直角三角形紙片折疊,使點(diǎn)與點(diǎn)重合,這時為折痕,為等腰三角形;再繼續(xù)將紙片沿的對稱軸折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內(nèi)接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.

知識運(yùn)用:

(1)如圖②,正方形網(wǎng)格中的能折疊成“疊加矩形”嗎?如果能,請在圖②中畫出折痕;

(2)如圖③,在正方形網(wǎng)格中,以給定的為一邊,畫出一個斜三角形,使其頂點(diǎn)在格點(diǎn)上,且折成的“疊加矩形”為正方形;

(3)若一個銳角三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是什么?結(jié)合圖③,說明理由。

拓展應(yīng)用:

(4)如果一個四邊形一定能折成"疊加矩形",那么它必須滿足的條件是什么?

 

查看答案和解析>>

科目:czsw 來源:玉林 題型:填空題

問題提出:在日常生活中,我們慢慢咀嚼饅頭時會覺得有些甜,那么“饅頭變甜與唾液的分泌有關(guān)嗎?”請按右表所示的探究方案完成填空.
組別 A試管 B試管
饅頭處理 饅頭碎屑 饅頭碎屑
加入液體 清水 唾液
是否攪拌 攪拌 攪拌
實驗環(huán)境 37℃
實驗時間 15分鐘 15分鐘
實驗結(jié)果 變藍(lán)色
(1)完善方案:①______.
(2)實驗結(jié)果:兩支試管滴加碘液后,②______.
(3)得出結(jié)論:______.

查看答案和解析>>

科目:czsw 來源:2009年廣西玉林市中考生物試卷(解析版) 題型:填空題

問題提出:在日常生活中,我們慢慢咀嚼饅頭時會覺得有些甜,那么“饅頭變甜與唾液的分泌有關(guān)嗎?”請按右表所示的探究方案完成填空.
組別A試管B試管
饅頭處理饅頭碎屑饅頭碎屑
加入液體清水唾液
是否攪拌攪拌攪拌
實驗環(huán)境37℃
實驗時間15分鐘15分鐘
實驗結(jié)果變藍(lán)色
(1)完善方案:①   
(2)實驗結(jié)果:兩支試管滴加碘液后,②   
(3)得出結(jié)論:   

查看答案和解析>>

科目:czsx 來源: 題型:解答題

問題提出:如何把一個三角形分割成n(n≥9)個小正三角形?
為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個正三角形分割成4個小正三角形,即在原來1個正三角形的基礎(chǔ)上增加了3個正三角形.
基本分割法2:如圖②,把一個正三角形分割成6個小正三角形,即在原來1個正三角形的基礎(chǔ)上增加了5個正三角形.

問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正三角形分割成n(n≥9)個小正三角形.
(1)把一個正三角形分割成9個小正三角形.
①請你在基本分割法1基礎(chǔ)上把答題卷上圖③的正三角形分割成9個正三角形;
②請你在基本分割法2基礎(chǔ)上把答題卷上圖④的正三角形分割成9個正三角形;
(2)把答題卷上圖⑤的正三角形分割成10個小正三角形.
(3)請你參照上述分割方法,把答題卷上圖⑥給出的正三角形分割成11個小正三角形
注意:本題以上所有解答,用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法.
(4)請你簡要敘述把一個正三角形分割成n(n≥9)個小正三角形的方法.

查看答案和解析>>

科目:czsx 來源: 題型:解答題

問題提出:如何把一個等邊三角形分割成n個(n≥9)個小等邊三角形.
解決問題:
(1)把一個等邊三角形分割成4個小等邊三角形,這個步驟我們稱為基本分割法1,請在圖a中畫出草圖.
(2)把一個等邊三角形分割成6個小等邊三角形,這個步驟我們稱為基本分割法2,請在圖b中畫出草圖.
(3)分別把圖c、圖d和圖e的等邊三角形分割成9個、10個和11個小等邊三角形.
問題解決:
(4)請你寫出把一個等邊三角形分割成n個(n≥9)個小等邊三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

科目:czsx 來源: 題型:解答題

問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大?。?br/>解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知小麗和小穎購買同一種商品的平均價格分別為數(shù)學(xué)公式元/千克和數(shù)學(xué)公式元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價格的高低.
(2)試比較圖2和圖3中兩個矩形周長M1、N1的大小(b>c).
作业宝
聯(lián)系拓廣
小剛在超市里買了一些物品,用一個長方體的箱子“打包”,這個箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,問哪種方法用繩最短?哪種方法用繩最長?請說明理由.
作业宝

查看答案和解析>>