欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網(wǎng) > 試題搜索列表 >f(x)=lnx- 若a=2 d 切線方程

f(x)=lnx- 若a=2 d 切線方程答案解析

科目:gzsx 來源: 題型:選擇題

15.已知函數(shù)f(x)的圖象在點(diǎn)(x0,f(x0))處的切線方程l:y=g(x),若函數(shù)f(x)滿足?x∈l(其中I為函數(shù)f(x)的定義域),當(dāng)x≠x0時(shí),[f(x)-g(x)](x-x0)>0恒成立,則稱x0為函數(shù)f(x)的“轉(zhuǎn)折點(diǎn)”,若函數(shù)f(x)=lnx-ax2-x在(0,e]上存在一個(gè)“轉(zhuǎn)折點(diǎn)”,則a的取值范圍為( ?。?table class="qanwser">A.$[{\frac{1}{{2{e^2}}},+∞})$B.$({-1,\frac{1}{{2{e^2}}}}]$C.$[{-\frac{1}{{2{e^2}}},1})$D.$({-∞,-\frac{1}{{2{e^2}}}}]$

查看答案和解析>>

科目:gzsx 來源: 題型:選擇題

12.已知函數(shù)f(x)=x2-x+lnx的圖象在點(diǎn)P(x0,y0)處的切線方程為y=g(x),若不等式$\frac{f(x)-g(x)}{x-{x}_{0}}$>0對任意x∈(0,x0)∪(x0,+∞)恒成立,則x0=(  )
A.1B.$\frac{\sqrt{2}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:gzsx 來源: 題型:選擇題

19.設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0)處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若$\frac{h(x)-g(x)}{x-{x}_{0}}$>0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點(diǎn)”,則f(x)=lnx+2x2-x的“類對稱點(diǎn)”的橫坐標(biāo)是(  )
A.eB.$\frac{1}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:gzsx 來源: 題型:選擇題

7.設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若$\frac{h(x)-g(x)}{x-{x}_{0}}$>0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點(diǎn)”,則f(x)=lnx+x2-x的“類對稱點(diǎn)”的橫坐標(biāo)是( ?。?table class="qanwser">A.2B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:gzsx 來源: 題型:

(2012•藍(lán)山縣模擬)已知函數(shù)f(x)=
2-x-1,x≤0
f(x-1),x>0.
,y=g(x)為k(x)=lnx+a+1在x=1處的切線方程,若方程f(x)-g(x)=0有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( ?。?/div>

查看答案和解析>>

科目:gzsx 來源: 題型:解答題

20.已知函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d為實(shí)常數(shù))在x=0處取得極小值2,且曲線y=f(x)在x=3處的切線方程為3x+y-11=0.
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)h1(x)=ex+t[f′(x)+x2-x],h2(x)=t[f′(x)+x2-x]-lnx.其中t為實(shí)常數(shù),試探究是否存在區(qū)間M,使得h1(x)和h2(x)在區(qū)間M上具有相同的單調(diào)性,若存在,說明區(qū)間M應(yīng)滿足的條件及對應(yīng)t的取值范圍,并指出h1(x)和h2(x)在區(qū)間M上的單調(diào)性;若不存在.請說明理由.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知函數(shù)y=f(x),x∈D,設(shè)曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線的方程為y=kx+m,如果對任意的x∈D,均有:
①當(dāng)x<x0時(shí),f(x)<kx+m;
②當(dāng)x=x0時(shí),f(x)=kx+m;
③當(dāng)x>x0時(shí),f(x)>kx+m.
則稱x0為函數(shù)y=f(x)的一個(gè)“∫-點(diǎn)”.
(Ⅰ)判斷0是否是下列函數(shù)的“∫-點(diǎn)”:
①f(x)=x3;②f(x)=sinx.(只需寫出結(jié)論)
(Ⅱ)設(shè)函數(shù)f(x)=ax2+lnx.
①若a=
1
2
,證明:1是函數(shù)y=f(x)的一個(gè)“∫-點(diǎn)”;
②若函數(shù)y=f(x)存在“∫-點(diǎn)”,直接寫出a的取值范圍.

查看答案和解析>>