已知矩形abcd.ab=8.bc=6,e為ad邊上一點(diǎn).過a.b.e三點(diǎn)作⊙o答案解析
科目:czsx
來源:2016屆浙江省九年級(jí)下學(xué)期學(xué)科素養(yǎng)測(cè)試數(shù)學(xué)試卷(解析版)
題型:解答題
已知矩形ABCD中,AB=2,AD=5,點(diǎn)E是AD邊上一動(dòng)點(diǎn),連接BE、CE,以BE為直徑作⊙O,交BC于點(diǎn)F,過點(diǎn)F作FH⊥CE于H.

(Ⅰ)當(dāng)直線FH與⊙O相切時(shí),求AE的長(zhǎng);
(Ⅱ)若直線FH交⊙O于點(diǎn)G,
(?。┊?dāng)FH∥BE時(shí),求
的長(zhǎng);
(ⅱ)在點(diǎn)E運(yùn)動(dòng)過程中,△OFG能否成為等腰直角三角形?如果能,求出此時(shí)AE的長(zhǎng);如果不能,說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:解答題
10.如圖1所示,已知矩形ABCD中,AB=2,AD=5,點(diǎn)E是AD邊上一動(dòng)點(diǎn),連接BE、CE,以BE為直徑作⊙O,交BC于點(diǎn)F,過點(diǎn)F作FH⊥CE于點(diǎn)H,直線FH交⊙O于點(diǎn)G.

(1)如圖2所示,當(dāng)點(diǎn)E為AD的中點(diǎn)時(shí),求證:FH為⊙O的切線;
(2)當(dāng)FH∥BE,求FG的長(zhǎng);
(3)在點(diǎn)E的運(yùn)動(dòng)過程中,當(dāng)AE≤$\frac{1}{2}$AD時(shí),△OFG能否成為等腰直角三角形?如果能,求出此時(shí)AE的長(zhǎng);如果不能,說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:
如圖1,已知矩形ABCD,E為AD邊上一動(dòng)點(diǎn),過A,B,E三點(diǎn)作⊙O,P為AB的中點(diǎn),連接OP,
(1)求證:BE是⊙O的直徑且OP⊥AB;
(2)若AB=BC=8,AE=6,試判斷直線DC與⊙O的位置關(guān)系,并說明理由;
(3)如圖2,若AB=10,BC=8,⊙O與DC邊相交于H,I兩點(diǎn),連結(jié)BH,當(dāng)∠ABE=∠CBH時(shí),求△ABE的面積.

查看答案和解析>>
科目:czsx
來源:
題型:解答題
18.

如圖,已知矩形ABCD中,AB=4,AD=m,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),在邊DA上以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),連接CP,作點(diǎn)D關(guān)于直線PC的對(duì)稱點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)若m=6,求當(dāng)P,E,B三點(diǎn)在同一直線上時(shí)對(duì)應(yīng)的t的值.
(2)已知m滿足:在動(dòng)點(diǎn)P從點(diǎn)D到點(diǎn)A的整個(gè)運(yùn)動(dòng)過程中,有且只有一個(gè)時(shí)刻t,使點(diǎn)E到直線BC的距離等于3,求所有這樣的m的取值范圍.
查看答案和解析>>
科目:czsx
來源:2014-2015學(xué)年江蘇省九年級(jí)12月階段調(diào)研測(cè)試數(shù)學(xué)試卷(解析版)
題型:解答題
(本題滿分12分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.

(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
①求證:△OCP∽△PDA;
②若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng);
(2)若圖1中的點(diǎn)P恰好是CD邊的中點(diǎn),求∠OAB的度數(shù);(提示:直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為300)
(3)如圖2,




,擦去折痕AO、線段OP,連結(jié)BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問當(dāng)點(diǎn)M、N在移動(dòng)過程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長(zhǎng)度.
查看答案和解析>>
科目:czsx
來源:
題型:

已知在矩形ABCD中,P是邊AD上的一動(dòng)點(diǎn),聯(lián)結(jié)BP、CP,過點(diǎn)B作射線交線段CP的延長(zhǎng)線于點(diǎn)E,交邊AD于點(diǎn)M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)當(dāng)AP=4時(shí),求∠EBP的正切值;
(3)如果△EBC是以∠EBC為底角的等腰三角形,求AP的長(zhǎng).
查看答案和解析>>
科目:czsx
來源:
題型:
已知在矩形ABCD中,P是邊AD上的一動(dòng)點(diǎn),聯(lián)結(jié)BP、CP,過點(diǎn)B作射線交線段CP的延長(zhǎng)線于點(diǎn)E,交邊AD于點(diǎn)M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;
(1)求y關(guān)于x的函數(shù)解析式,并寫出
它的定義域;
(2)當(dāng)AP=4時(shí),求∠EBP的正切值;
(3)如果△EBC是以∠EBC為底角的等腰三角形,求AP的長(zhǎng).

查看答案和解析>>
科目:czsx
來源:
題型:
已知,矩形紙片ABCD中,AB=10cm,AD=8cm,按下列步驟進(jìn)行操作:

如圖1,在線段AD上任意取一點(diǎn)E,沿EB,EC剪下一個(gè)三角形紙片EBC(余下部分不再使用);
如圖2,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點(diǎn)M,線段BC上任意取一點(diǎn)N,沿MN將梯形紙片GBCH剪成兩部分;
如圖3,將MN左側(cè)紙片繞G點(diǎn)按順時(shí)針方向旋轉(zhuǎn)180°,使線段GB與GE重合,將MN右側(cè)紙片繞H點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)180°,使線段HC與HE重合,拼成一個(gè)與三角形紙片EBC面積相等的四邊形紙片.(注:裁剪和拼圖過程均無(wú)縫且不重疊)
發(fā)現(xiàn):(1)通過操作,最后拼成的四邊形形狀為
;
探究:(2)由于題中點(diǎn)E、M、N的位置不確定,因而所得四邊形的周長(zhǎng)會(huì)發(fā)生變化,探究下列問題:
①拼成的四邊形的周長(zhǎng)取決于線段
的長(zhǎng);
②通過操作發(fā)現(xiàn),四邊形的周長(zhǎng)存在最大值和最小值,請(qǐng)?jiān)趫D4和圖5中分別畫出相應(yīng)的剪拼圖并直接寫出該四邊形的周長(zhǎng)最值.
查看答案和解析>>
科目:czsx
來源:
題型:解答題
5.

已知如圖,在矩形ABCD中,P是邊AD上的一動(dòng)點(diǎn),連結(jié)BP、CP,過點(diǎn)B作射線交線段CP的延長(zhǎng)線于點(diǎn)E,交邊AD與點(diǎn)M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x(2<x≤5),PM=y
(1)求y關(guān)于x的函數(shù)解析式;
(2)當(dāng)AP=4時(shí),求∠EBP的正切值;
(3)如果△EBC是以∠EBC為底角的等腰三角形,求AP的長(zhǎng).
查看答案和解析>>
科目:czsx
來源:
題型:解答題
6.已知,矩形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進(jìn)行操作:
如圖1在線段AD上任意取一點(diǎn)E,沿EB、EC剪下一個(gè)三角形紙片EBC(余下部分不再使用);如圖2,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點(diǎn)M,線段BC上任意取一點(diǎn)N,沿MN將梯形紙片GBCH剪成兩部分;如圖3,將MN左側(cè)紙片繞G點(diǎn)按順時(shí)針方向旋轉(zhuǎn)180°,使線段GB與GE重合,將MN右側(cè)紙片繞H點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)180°,使線段HC與HE重合,拼成一個(gè)與三角形紙片EBC面積相等的四邊形紙片.(注:裁剪和拼圖過程均無(wú)縫且不重疊)
(1)通過操作,最后拼成的四邊形為平行四邊形.
(2)拼成的這個(gè)四邊形的周長(zhǎng)的最小值為20cm,最大值為12+$4\sqrt{13}$cm.
查看答案和解析>>
科目:czsx
來源:
題型:
(2012•通州區(qū)一模)小明在學(xué)習(xí)軸對(duì)稱的時(shí)候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點(diǎn),請(qǐng)你在直線l上確定一點(diǎn)P,使得PA+PB的值最?。∶魍ㄟ^獨(dú)立思考,很快得出了解決這個(gè)問題的正確方法,他的作法是這樣的:
①作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′.
②連接A′B,交直線l于點(diǎn)P.則點(diǎn)P為所求.請(qǐng)你參考小明的作法解決下列問題:
(1)如圖1,在△ABC中,點(diǎn)D、E分別是AB、AC邊的中點(diǎn),BC=6,BC邊上的高為4,請(qǐng)你在BC邊上確定一點(diǎn)P,使得△PDE的周長(zhǎng)最?。?BR>①在圖1中作出點(diǎn)P.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法)
②請(qǐng)直接寫出△PDE周長(zhǎng)的最小值
8
8
.
(2)如圖2在矩形ABCD中,AB=4,BC=6,G為邊AD的中點(diǎn),若E、F為邊AB上的兩個(gè)動(dòng)點(diǎn),點(diǎn)E在點(diǎn)F左側(cè),且EF=1,當(dāng)四邊形CGEF的周長(zhǎng)最小時(shí),請(qǐng)你在圖2中確定點(diǎn)E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長(zhǎng)的最小值
.

查看答案和解析>>
科目:czsx
來源:
題型:解答題
如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.
查看答案和解析>>
科目:czsx
來源:湖南省中考真題
題型:解答題
如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式;
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀。
查看答案和解析>>
科目:czsx
來源:2012年初中畢業(yè)升學(xué)考試(湖南衡陽(yáng)卷)數(shù)學(xué)(帶解析)
題型:解答題
如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)

(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.
查看答案和解析>>
科目:czsx
來源:2013屆山東省濟(jì)南市長(zhǎng)清區(qū)九年級(jí)學(xué)業(yè)水平模擬考試數(shù)學(xué)試卷(帶解析)
題型:解答題
如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A、D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O).

(1)求此拋物線的解析式;
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R;
①求證:PF=PR
②是否存在點(diǎn)P,使得△PFR為等邊三角形;若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為點(diǎn)S,試判斷△RSF的形狀.
查看答案和解析>>
科目:czsx
來源:2013年山東省濟(jì)南市長(zhǎng)清區(qū)中考數(shù)學(xué)二模試卷(解析版)
題型:解答題
如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.
查看答案和解析>>
科目:czsx
來源:2013年江西省宜春市樟樹市中考數(shù)學(xué)模擬試卷(二)(解析版)
題型:解答題
如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.
查看答案和解析>>
科目:czsx
來源:2012年湖南省衡陽(yáng)市中考數(shù)學(xué)試卷(解析版)
題型:解答題
如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.
查看答案和解析>>
科目:czsx
來源:2012-2013學(xué)年山東省濟(jì)南市長(zhǎng)清區(qū)九年級(jí)學(xué)業(yè)水平模擬考試數(shù)學(xué)試卷(解析版)
題型:解答題
如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A、D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O).

(1)求此拋物線的解析式;
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R;
①求證:PF=PR
②是否存在點(diǎn)P,使得△PFR為等邊三角形;若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為點(diǎn)S,試判斷△RSF的形狀.
查看答案和解析>>
科目:czsx
來源:2012年初中畢業(yè)升學(xué)考試(湖南衡陽(yáng)卷)數(shù)學(xué)(解析版)
題型:解答題
如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)

(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.
查看答案和解析>>