欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網(wǎng) > 試題搜索列表 >橢圓的左、右焦點分別為、,是橢圓上一點,

橢圓的左、右焦點分別為、,是橢圓上一點,答案解析

科目:gzsx 來源: 題型:

(9)已知雙曲線的左、右焦點分別為,是準線上一點,且,,則雙曲線的離心率是( ?。?/p>

A.                   B.                   C.               D.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知雙曲線的左、右焦點分別為,是準線上一點,

,,則雙曲線的離心率是( ?。?/p>

A.               B.               C.                  D.

查看答案和解析>>

科目:gzsx 來源: 題型:

(07年浙江卷)已知雙曲線的左、右焦點分別為,,是準線上一點,且,,則雙曲線的離心率是( ?。?/p>

A.               B.               C.                  D.

查看答案和解析>>

科目:gzsx 來源:2007年普通高等學校招生全國統(tǒng)一考試理科數(shù)學卷(浙江) 題型:選擇題

已知雙曲線的左、右焦點分別為,,是準線上一點,且,,則雙曲線的離心率是( ?。?/p>

A.        B.         C.          D.

 

查看答案和解析>>

科目:gzsx 來源: 題型:

已知雙曲線的左、右焦點分別為,,是準線上一點,且,,則雙曲線的離心率是       

查看答案和解析>>

科目:gzsx 來源: 題型:

已知雙曲線的左、右焦點分別為,是準線上一點,且,,則雙曲線的離心率是       

查看答案和解析>>

科目:gzsx 來源: 題型:

已知雙曲線的左、右焦點分別為,是準線上一點,且,,則雙曲線的離心率是       

查看答案和解析>>

科目:gzsx 來源: 題型:

已知雙曲線的左、右焦點分別為,是準線上一點,且,則雙曲線的離心率是

A.               B.               C.                  D.

查看答案和解析>>

科目:gzsx 來源: 題型:

精英家教網(wǎng)設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=0
,若過A,Q,F(xiàn)2三點的圓恰好與直線l:x-
3
y-3=0
相切.過定點M(0,2)的直線l1與橢圓C交于G,H兩點(點G在點M,H之間).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l1的斜率k>0,在x軸上是否存在點P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形.如果存在,求出m的取值范圍,如果不存在,請說明理由;
(Ⅲ)若實數(shù)λ滿足
MG
MH
,求λ的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

(2012•藍山縣模擬)設(shè)橢圓C的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0
.則橢圓C的離心率為
1
2
1
2

查看答案和解析>>

科目:gzsx 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0
,|F1F2|=2.
(1)求橢圓C的方程;
(2)過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:gzsx 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F(xiàn)2,上頂點為A,以F1為圓心F1F2為半徑的圓恰好經(jīng)過點A且與直線l:x-
3
y-3=0相切
(1)求橢圓C的離心率;
(2)求橢圓C的方程;
(3)過右焦點F2作斜率為K的直線與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0)使得PM,PN以為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>
a2-b2
>0)
的左、右焦點分別為F1、F2,上、下頂點分別為B1、B2,四邊形B1F1B2F2的一個內(nèi)角等于
π
3
,橢圓過點P(1,
3
2
).
(1)求橢圓E的方程;
(2)直線l的斜率等于橢圓E的離心率,且交橢圓于A、B兩點,直線PA和PB分別交x軸于點M、N,求證:|PM|=|PN|.

查看答案和解析>>

科目:gzsx 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0
.則橢圓C的離心率為
1
2
1
2

查看答案和解析>>

科目:gzsx 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以AF2為直徑的圓與直線y=
3
x+2
相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得以PM、PN為鄰邊的平行四邊形是菱形?若存在,求實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:gzsx 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1、F2,上頂點為A,在x軸上有一點B,滿足AB⊥AF2且F1為BF2的中點.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過A、B、F2三點的圓恰好與直線l:x-
3
y-3=0相切,判斷橢圓C和直線l的位置關(guān)系.

查看答案和解析>>

科目:gzsx 來源: 題型:

(2012•北海一模)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0
,則橢圓C的離心率為( ?。?/div>

查看答案和解析>>

科目:gzsx 來源: 題型:

精英家教網(wǎng)設(shè)橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,上頂點為A,在x軸負半軸上有一點B,滿足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)若過A、B、F2三點的圓C恰好與直線l:x-
3
y-3=0
相切,求圓C方程及橢圓D的方程;
(Ⅱ)若過點T(3,0)的直線與橢圓D相交于兩點M、N,設(shè)P為橢圓上一點,且滿足
OM
+
ON
=t
OP
(O為坐標原點),求實數(shù)t取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

(2013•天津模擬)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1、F2,上頂點為A,在x軸負半軸上有一點B,滿足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過A、B、F2三點的圓恰好與直線x-
3
y-3=0
相切,求橢圓C的方程;                      
(Ⅲ)在(Ⅱ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,若點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,求m的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,在x軸負半軸上有一點B,滿足AB⊥AF2.且F1為BF2的中點.
(1)求橢圓C的離心率;
(2)D是過A,B,F(xiàn)2三點的圓上的點,D到直線l:x-
3
y-3=0的最大距離等于橢圓長軸的長,求橢圓C的方程.

查看答案和解析>>