欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網(wǎng) > 試題搜索列表 >成比例線段已知a-b÷a+b=1÷5,求證a+2b÷a-b=7

成比例線段已知a-b÷a+b=1÷5,求證a+2b÷a-b=7答案解析

科目:czsx 來源: 題型:閱讀理解

請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
BD
DC
=
AB
AC

分析:要證
BD
DC
=
AB
AC
,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作C精英家教網(wǎng)E∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明
BD
DC
=
AB
AC
就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA?
∠1=∠E
∠2=∠3
∠1=∠2
?∠E=∠3?AE=AC
,
CE∥DA?
BD
DC
=
BA
AE
AE=AC
?
BD
DC
=
AB
AC

(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學思想的哪一種?選出一個填在后面的括號內(nèi).精英家教網(wǎng)[]
①數(shù)形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:czsx 來源: 題型:解答題

三角形內(nèi)角平分線性質定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例。 已知:如圖,△ABC中,AD是角平分線. 求證:(1)BD/DC=AB/AC (2)若AD是三角形ABC外角的平分線,交BC延長線于點D,是否還有以上結論?

查看答案和解析>>

科目:czsx 來源:2000年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學思想的哪一種?選出一個填在后面的括號內(nèi).[]
①數(shù)形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:czsx 來源:2000年山西省中考數(shù)學試卷(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA,
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學思想的哪一種?選出一個填在后面的括號內(nèi).[]
①數(shù)形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:czsx 來源:期末題 題型:解答題

閱讀下面材料,按要求完成后面作業(yè)。
三角形內(nèi)角平分線性質定理:三角形內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例。
 已知:△ABC中,AD是角平分線(如圖1), 求證:=
               
分析:要證=,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在的三角形相似,現(xiàn)在B、D、C在一條直線,△ABD與△ADC不相似,需要考慮用別的方法換比。
 在比例式=中,AC恰好是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明=,就可轉化證=。
(1)完成證明過程: 
證明:
(2)上述證明過程中,用到了哪些定理(寫對兩個即可)
答:用了:①____________;
②_____________。
 (3)在上述分析和你的證明過程中,主要用到了下列三種數(shù)學思想的哪一種:①數(shù)形結合思想 ②轉化思想 ③分類討論思想 
答:____________。
(4) 用三角形內(nèi)角平分線定理解答問題: 
如圖2,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BD=7cm,求BC之長。

查看答案和解析>>

科目:czsx 來源:2000年全國中考數(shù)學試題匯編《相交線與平行線》(01)(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA,
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學思想的哪一種?選出一個填在后面的括號內(nèi).[]
①數(shù)形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:czsx 來源:數(shù)學教研室 題型:044

請閱讀下列材料,并回答所提出的問題。

三角形內(nèi)角平分線性質定理:三角形的內(nèi)角平分線分對邊所得的線段與兩

邊對應成比例。

已知:如圖,在△ABC中,AD是角平分線。

求證:。

分析:要證,一般只要證BD、DCABAC

BD、ABDC、AC所在的三角形相似即可,現(xiàn)在點B、D、C

在一條直線上,△ABD與△ADC不相似,需要考慮用別的方法換比。在比例式

中,AC恰是BD、DCAB的第四比例項,所以考慮過點CCE//AD,交

BA的延長線于點E,從而得到BD、DC、AB的第四比例項AE,這樣,證明

就可以轉化成證AEAC

證明:過點CCE//DABA的延長線于點E

。

1)在上述證明過程中,用到了哪些定理?(寫對兩個定理即可)

2)在上述分析、證明過程中,主要利用到了下列三種數(shù)學思想中的哪一種?選出一

個填在后面的括號內(nèi)………………………………………………………………( 

A. 數(shù)形結合思想       B. 轉化思想        C. 分類討論思想

3)用三角形內(nèi)角平分線性質定理解答問題。

如下圖,已知在△ABC中,AD是角平分線,AB5cmAC4cm,

BC7cm,求BD的長。

 

查看答案和解析>>

科目:czsx 來源:2000年全國中考數(shù)學試題匯編《三角形》(05)(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學思想的哪一種?選出一個填在后面的括號內(nèi).[]
①數(shù)形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:czsx 來源: 題型:

8、已知a=2.4cm,c=5.4cm,并且a,b,b,c成比例線段,那么b=
3.6
cm.

查看答案和解析>>

科目:czsx 來源: 題型:

已知a,b,c,d是成比例線段,且a=2,b=8,c=5,那么d=
20
20

查看答案和解析>>

科目:czsx 來源: 題型:

已知:a=3,b=4,c=5,請再添加一條線段,使這四條線段成比例線段.

查看答案和解析>>

科目:czsx 來源: 題型:

16、已知線段a=3cm,b=6cm,c=5cm,且a,b,d,c成比例線段,則d=
2.5
cm.

查看答案和解析>>

科目:czsx 來源: 題型:

已知a、b、c、d是成比例線段,其中a=5cm,b=3cm,c=6cm,則線段d=
3.6cm
3.6cm

查看答案和解析>>

科目:czsx 來源: 題型:

已知1,
3
,2,x成比例線段,則x值為( ?。?/div>

查看答案和解析>>

科目:czsx 來源: 題型:

22、已知a,b,c,d是成比例線段,其中a=3cm,b=2cm,c=6cm,則d=
4;9;1
cm.

查看答案和解析>>

科目:czsx 來源: 題型:

已知a,b,c,d是成比例線段,其中a=2cm,b=3cm,d=6cm,則c=
 

查看答案和解析>>

科目:czsx 來源: 題型:

(1)已知a、b、c、d是成比例線段,其中a=3cm,b=2cm,c=6cm,求線段d的長.
(2)已知線段a、b、c,a=4cm,b=9cm,線段c是線段 a和b的比例中項.求線段c的長.
(3)已知y=y1+y2,y1與x成正比例,y2與x成反比例,且當x=1時,y=4,x=2時,y=5.
求:①y與x之間的函數(shù)關系式;②當x=4時,求y的值.

查看答案和解析>>

科目:czsx 來源: 題型:

已知如圖中的兩個四邊形相似,找出圖中的成比例線段,并用比例式表示.
精英家教網(wǎng)

查看答案和解析>>

科目:czsx 來源: 題型:

14、已知線段a、b、c、d是成比例線段,且a=2cm,b=0.6cm,c=4cm,那么d=
1.2
cm.

查看答案和解析>>

科目:czsx 來源: 題型:

已知四條線段a,b,c,d是成比例線段,即
a
b
=
c
d
,下列說法錯誤的是( ?。?/div>

查看答案和解析>>