其中p為函數(shù)圖象的最高點(diǎn),tan∠APB=1/2交點(diǎn)答案解析
科目:gzsx
來(lái)源:
題型:
(2011•成都模擬)對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí)
①求f0(x)和fk(x)的解析式;
②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:gzsx
來(lái)源:2011年四川省成都市高三摸底測(cè)試數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí)
①求f(x)和fk(x)的解析式;
②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:gzsx
來(lái)源:2010-2011學(xué)年四川省成都市高三摸底數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí)
①求f(x)和fk(x)的解析式;
②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:gzsx
來(lái)源:2010年內(nèi)蒙古元寶山區(qū)高三第一次摸底考試?yán)砜茢?shù)學(xué)卷
題型:解答題
(本小題滿分14分) 對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,
m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí) ①求f0(x)和fk(x)的解析式; ②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:gzsx
來(lái)源:
題型:解答題
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí)
①求f0(x)和fk(x)的解析式;
②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:gzsx
來(lái)源:
題型:
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,當(dāng)階寬為2,階高為3時(shí),若Φ(x)=2x.
(1)求f0(x)和fk(x)的解析式;
(2)求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線.
查看答案和解析>>
科目:gzsx
來(lái)源:
題型:

已知函數(shù)f(x)=2Acos
2(
x+φ)-A(X∈R,A>0,|φ|<
),y=f(x)的部分圖象如圖所示,P、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(1,A)
(1)求f(x)的最小正周期及φ的值;
(2)若點(diǎn)R的坐標(biāo)為(1,0),∠PRQ=
,求△PRQ的面積.
查看答案和解析>>
科目:gzsx
來(lái)源:
題型:

已知函數(shù)
f(x)=Asin (x+φ),x∈R,A>0,
0<φ<.y=f(x)的部分圖象,如圖所示,P、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(1,A).
(Ⅰ)求f(x)的最小正周期及φ的值;
(Ⅱ)若點(diǎn)R的坐標(biāo)為(1,0),
∠PRQ=,求A的值.
查看答案和解析>>
科目:gzsx
來(lái)源:
題型:

已知函數(shù)f(x)=Asin(
x+?)(A>0,0<?<
)的部分圖象如圖所示,P、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(2,A),點(diǎn)R的坐標(biāo)為(2,0).若∠PRQ=
,則y=f(x) 的最大值及?的值分別是( ?。?/div>
查看答案和解析>>
科目:gzsx
來(lái)源:2011年四川省成都市高三摸底測(cè)試數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,當(dāng)階寬為2,階高為3時(shí),若Φ(x)=2x.
(1)求f(x)和fk(x)的解析式;
(2)求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線.
查看答案和解析>>
科目:gzsx
來(lái)源:2011-2012學(xué)年福建省廈門(mén)市高三(上)期末數(shù)學(xué)試卷(文科)(解析版)
題型:選擇題
已知函數(shù)f(x)=Asin(

)(A>0,0<ϕ<

)的部分圖象如圖所示,P、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(2,A),點(diǎn)R的坐標(biāo)為(2,0).若∠PRQ=

,則y=f(x) 的最大值及ϕ的值分別是( )

A.2

,

B.

,

C.

,

D.2

,
查看答案和解析>>
科目:gzsx
來(lái)源:2011年四川省成都市畢業(yè)班摸底測(cè)試(文科)數(shù)學(xué)卷
題型:解答題
(本小題滿分14分)
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,
m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí) ①求f0(x)和fk(x)的解析式; ②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
查看答案和解析>>
科目:gzsx
來(lái)源:2010-2011學(xué)年四川省成都市高三摸底數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,當(dāng)階寬為2,階高為3時(shí),若Φ(x)=2x.
(1)求f(x)和fk(x)的解析式;
(2)求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線.
查看答案和解析>>
科目:gzsx
來(lái)源:四川省成都樹(shù)德中學(xué)2012屆高考適應(yīng)考試(一)數(shù)學(xué)試題文理科
題型:013
查看答案和解析>>
科目:gzsx
來(lái)源:內(nèi)蒙古元寶山區(qū)一中2011屆高三第一次摸底考試文科數(shù)學(xué)試題
題型:044
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí)
①求f0(x)和fk(x)的解析式;
②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:gzsx
來(lái)源:2012-2013學(xué)年湖南省永州市祁陽(yáng)四中高三(上)段考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題

已知函數(shù)

,x∈R,A>0,

.y=f(x)的部分圖象,如圖所示,P、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(1,A).
(Ⅰ)求f(x)的最小正周期及φ的值;
(Ⅱ)若點(diǎn)R的坐標(biāo)為(1,0),

,求A的值.
查看答案和解析>>
科目:gzsx
來(lái)源:
題型:解答題
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,當(dāng)階寬為2,階高為3時(shí),若Φ(x)=2x.
(1)求f0(x)和fk(x)的解析式;
(2)求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線.
查看答案和解析>>
科目:gzsx
來(lái)源:2012-2013學(xué)年湖南省永州市祁陽(yáng)四中高三(上)段考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題

已知函數(shù)

,x∈R,A>0,

.y=f(x)的部分圖象,如圖所示,P、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(1,A).
(Ⅰ)求f(x)的最小正周期及φ的值;
(Ⅱ)若點(diǎn)R的坐標(biāo)為(1,0),

,求A的值.
查看答案和解析>>
科目:gzsx
來(lái)源:2011年浙江省高考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題

已知函數(shù)

,x∈R,A>0,

.y=f(x)的部分圖象,如圖所示,P、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(1,A).
(Ⅰ)求f(x)的最小正周期及φ的值;
(Ⅱ)若點(diǎn)R的坐標(biāo)為(1,0),

,求A的值.
查看答案和解析>>
科目:gzsx
來(lái)源:2010-2011學(xué)年浙江省杭州市源清中學(xué)高一(下)數(shù)學(xué)暑假作業(yè)(三角函數(shù))(解析版)
題型:解答題

已知函數(shù)

,x∈R,A>0,

.y=f(x)的部分圖象,如圖所示,P、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(1,A).
(Ⅰ)求f(x)的最小正周期及φ的值;
(Ⅱ)若點(diǎn)R的坐標(biāo)為(1,0),

,求A的值.
查看答案和解析>>