科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線(xiàn).以O為圓心,OC為半徑作⊙O.
![]()
(1)求證:AB是⊙O的切線(xiàn).
(2)已知AO交⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D,tanD=
,求
的值.
(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)
(3)
【解析】試題分析:(1)過(guò)O作OF⊥AB于F,由角平分線(xiàn)上的點(diǎn)到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得
= tanD=
;(3)先由勾股定理求得AE的長(zhǎng),再證明△B0F∽△BAC,得
,設(shè)BO="y" ,BF=z,列二元一次方程組即可解決問(wèn)題.
試題解析:(1)證明:作OF⊥AB于F
![]()
∵AO是∠BAC的角平分線(xiàn),∠ACB=90
∴OC=OF
∴AB是⊙O的切線(xiàn)
(2)連接CE
![]()
∵AO是∠BAC的角平分線(xiàn),
∴∠CAE=∠CAD
∵∠ACE所對(duì)的弧與∠CDE所對(duì)的弧是同弧
∴∠ACE=∠CDE
∴△ACE∽△ADC
∴
= tanD=![]()
(3)先在△ACO中,設(shè)AE=x,
由勾股定理得
(x+3)="(2x)" +3 ,解得x="2,"
∵∠BFO=90°=∠ACO
易證Rt△B0F∽R(shí)t△BAC
得
,
設(shè)BO=y BF=z
![]()
即4z=9+3y,4y=12+3z
解得z=
y=![]()
∴AB=
+4=![]()
考點(diǎn):圓的綜合題.
【題型】解答題
【結(jié)束】
22
【題目】已知:二次函數(shù)
的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線(xiàn)段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)若點(diǎn)E是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某校為了解八年級(jí)學(xué)生的視力情況,對(duì)八年級(jí)的學(xué)生進(jìn)行了一次視力調(diào)查,并將調(diào)查數(shù)據(jù)進(jìn)行統(tǒng)計(jì)整理,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
視力 | 頻數(shù)(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)在頻數(shù)分布表中,a= ,b= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若視力在4.6以上(含4.6)均屬正常,求視力正常的人數(shù)占被調(diào)查人數(shù)的百分比是多少?
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,∠BOC=30°,C在∠AOB外部,OM平分∠AOC,ON平分∠BOC. 則∠MON= 度.
(1)若∠AOB=α,其他條件不變,則∠MON= 度.
(2)若∠BOC=β(β為銳角),其他條件不變,則∠MON= 度.
(3)若∠AOB=α且∠BOC=β(β為銳角),求∠MON的度數(shù)(請(qǐng)?jiān)趫D2中畫(huà)出示意圖并解答)
![]()
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(1)閱讀下面材料:
點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b, A、B兩點(diǎn)之間的距離表示為AB,若a≥b,則 | a-b | = a-b;若a < b,則 | a-b | = b-a,當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí), 不妨設(shè)點(diǎn)A在原,
如圖甲, AB = OB =∣b∣=∣a b∣;當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
① 如圖乙,點(diǎn)A、B都在原點(diǎn)的右邊,AB=OBOA=|b||a|=ba =|ab |;
![]()
②如圖丙,點(diǎn)A、B都在原點(diǎn)的左邊, AB = OB OA =|b||a|= b (a) = |ab|;
![]()
③如圖丁,點(diǎn)A、B在原點(diǎn)的兩邊AB=OA+OB=|a|+|b|=a+(b) =|ab|.
![]()
綜上所述,數(shù)軸上A、B兩點(diǎn)之間的距離AB=∣ab∣.
(2)回答下列問(wèn)題:
①數(shù)軸上表示1和3的兩點(diǎn)之間的距離是______,數(shù)軸上表示1和3的兩點(diǎn)之間的距離是______;
②數(shù)軸上表示x和1的兩點(diǎn)分別是點(diǎn)A和B,則A、B之間的距離表示為______,如果AB=2,那么x =________ ;
③當(dāng)代數(shù)式∣x +1∣+∣x 3∣取最小值時(shí),相應(yīng)的x的取值范圍是_________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過(guò)點(diǎn)A作AM⊥BD于點(diǎn)M,過(guò)點(diǎn)D作DN⊥AB于點(diǎn)N,且DN=
,在DB的延長(zhǎng)線(xiàn)上取一點(diǎn)P,滿(mǎn)足∠ABD=∠MAP+∠PAB,則AP=_____.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】將一列有理數(shù)-1,2,-3,4,-5,6,……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,“峰1” 中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,“峰5”中C 的位置是有理數(shù) ,2017應(yīng)排在A、E中 的位置.其中兩個(gè)填空依次為
![]()
A.24 , AB.﹣24, AC.25, ED.﹣25, E
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線(xiàn).以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線(xiàn).
(2)已知AO交⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D,tanD=
,求
的值.
(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展以“我最喜愛(ài)的傳統(tǒng)文化”為主題的調(diào)查活動(dòng),從“詩(shī)詞、國(guó)畫(huà)、對(duì)聯(lián)、書(shū)法、戲曲”五種傳統(tǒng)文化中,選取喜歡的一種(只選一種)進(jìn)行調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整統(tǒng)計(jì)圖.
![]()
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)喜歡“書(shū)法”的有多少名學(xué)生?并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求喜歡“國(guó)畫(huà)”對(duì)應(yīng)扇形圓心角的度數(shù).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)翻折后,恰好拼成一個(gè)無(wú)縫隙無(wú)重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長(zhǎng)是________ cm.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com