題目列表(包括答案和解析)
(本題滿分14分
已知橢圓
:
的離心率為
,以原點為圓心,
橢圓的短半軸長為半徑的圓與直線
相切.
⑴求橢圓C的方程;
⑵設(shè)
,
、
是橢圓
上關(guān)于
軸對稱的任意兩個不同的點,連結(jié)
交橢圓![]()
于另一點
,求直線
的斜率的取值范圍;
⑶在⑵的條件下,證明直線
與
軸相交于定點.
(本題滿分14分)已知函數(shù)
(
為常數(shù),
).
(Ⅰ)當
時,求函數(shù)
在
處的切線方程;
(Ⅱ)當
在
處取得極值時,若關(guān)于
的方程
在[0,2]上恰有兩個不相等的實數(shù)根,求實數(shù)
的取值范圍;
(Ⅲ)若對任意的
,總存在
,使不等式
成立,求實數(shù)
的取值范圍.
(本題滿分14分)
已知函數(shù)![]()
(1)若
處取得極值,求實數(shù)a的值;
(2)在(1)的條件下,若關(guān)于x的方程
上恰有兩個不同的實數(shù)根,求實數(shù)m的取值范圍;
(3)若存在
,使得不等式
成立,求實數(shù)a的取值范圍。
(本題滿分14分)已知函數(shù)
(
是常數(shù))
(I) 求函數(shù)
的單調(diào)區(qū)間;
(II) 當
在
處取得極值時,若關(guān)于x的方程
在
上恰有兩個不相等的實數(shù)根,求實數(shù)
的取值范圍;
(III) 求證:當
時
.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com