題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
![]()
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設(shè)平面PCD的法向量
,
則
,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點(diǎn)H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故
或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
已知等比數(shù)列
中,
,且
,公比
,(1)求
;(2)設(shè)
,求數(shù)列
的前
項(xiàng)和![]()
【解析】第一問,因?yàn)橛深}設(shè)可知![]()
又
故![]()
或
,又由題設(shè)
從而![]()
第二問中,![]()
當(dāng)
時(shí),
,
時(shí)![]()
故
時(shí),
時(shí),![]()
分別討論得到結(jié)論。
由題設(shè)可知![]()
又
故![]()
或
,又由題設(shè)
![]()
從而
……………………4分
(2)![]()
當(dāng)
時(shí),
,
時(shí)
……………………6分
故
時(shí),
……8分
時(shí),![]()
![]()
![]()
……………………10分
綜上可得
![]()
已知點(diǎn)
(
),過點(diǎn)
作拋物線
的切線,切點(diǎn)分別為
、
(其中
).
(Ⅰ)若
,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)
為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線
的方程是
,且以點(diǎn)
為圓心的圓
與直線
相切,
求圓
面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。
中∵直線
與曲線
相切,且過點(diǎn)
,∴
,利用求根公式得到結(jié)論先求直線
的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線
的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
,借助于函數(shù)的性質(zhì)圓
面積的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直線
與曲線
相切,且過點(diǎn)
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,則
的斜率
,
∴直線
的方程為:
,又
,
∴
,即
. -----------------7分
∵點(diǎn)
到直線
的距離即為圓
的半徑,即
,--------------8分
故圓
的面積為
. --------------------9分
(Ⅲ)∵直線
的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
, ………10分
∴![]()
,
當(dāng)且僅當(dāng)
,即
,
時(shí)取等號(hào).
故圓
面積的最小值
.
已知
,函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
在點(diǎn)(1,
)的切線方程;
(2)求函數(shù)
在[-1,1]的極值;
(3)若在
上至少存在一個(gè)實(shí)數(shù)x0,使
>g(xo)成立,求正實(shí)數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中
,那么當(dāng)
時(shí),
又
所以函數(shù)
在點(diǎn)(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對(duì)a分類討論
,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當(dāng)
時(shí),
又
∴ 函數(shù)
在點(diǎn)(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當(dāng)
即
時(shí)
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當(dāng)
即
時(shí),
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時(shí),極大值為
,無極小值
時(shí) 極大值是
,極小值是
----------8分
(Ⅲ)設(shè)
,![]()
對(duì)
求導(dǎo),得![]()
∵
,
![]()
∴
在區(qū)間
上為增函數(shù),則![]()
依題意,只需
,即
解得
或
(舍去)
則正實(shí)數(shù)
的取值范圍是(![]()
,
)
設(shè)橢圓
:
(
)的一個(gè)頂點(diǎn)為
,
,
分別是橢圓的左、右焦點(diǎn),離心率
,過橢圓右焦點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
(1)求橢圓
的方程;
(2)是否存在直線
,使得
,若存在,求出直線
的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為
,即
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到
,然后求解得到橢圓方程(2)中,對(duì)直線分為兩種情況討論,當(dāng)直線斜率存在時(shí),當(dāng)直線斜率不存在時(shí),聯(lián)立方程組,結(jié)合
得到結(jié)論。
解:(1)橢圓的頂點(diǎn)為
,即![]()
,解得
,
橢圓的標(biāo)準(zhǔn)方程為
--------4分
(2)由題可知,直線
與橢圓必相交.
①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意. --------5分
②當(dāng)直線斜率存在時(shí),設(shè)存在直線
為
,且
,
.
由
得
, ----------7分
,
,
![]()
=
所以
,
----------10分
故直線
的方程為
或
即
或![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com