題目列表(包括答案和解析)
解:能否投中,那得看拋物線(xiàn)與籃圈所在直線(xiàn)是否有交點(diǎn)。因?yàn)楹瘮?shù)
的零點(diǎn)是-2與4,籃圈所在直線(xiàn)x=5在4的右邊,拋物線(xiàn)又是開(kāi)口向下的,所以投不中。
某城市出租汽車(chē)的起步價(jià)為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車(chē)費(fèi)
若行駛路程超出4km,則按每超出lkm加收2元計(jì)費(fèi)(超出不足1km的部分按lkm計(jì)).從這個(gè)城市的民航機(jī)場(chǎng)到某賓館的路程為15km.某司機(jī)常駕車(chē)在機(jī)場(chǎng)與此賓館之間接送旅客,由于行車(chē)路線(xiàn)的不同以及途中停車(chē)時(shí)間要轉(zhuǎn)換成行車(chē)路程(這個(gè)城市規(guī)定,每停車(chē)5分鐘按lkm路程計(jì)費(fèi)),這個(gè)司機(jī)一次接送旅客的行車(chē)路程ξ是一個(gè)隨機(jī)變量,
(1)他收旅客的租車(chē)費(fèi)η是否也是一個(gè)隨機(jī)變量?如果是,找出租車(chē)費(fèi)η與行車(chē)路程ξ的關(guān)系式;
(2)已知某旅客實(shí)付租車(chē)費(fèi)38元,而出租汽車(chē)實(shí)際行駛了15km,問(wèn)出租車(chē)在途中因故停車(chē)?yán)塾?jì)最多幾分鐘?這種情況下,停車(chē)?yán)塾?jì)時(shí)間是否也是一個(gè)隨機(jī)變量?
在
中,
是三角形的三內(nèi)角,
是三內(nèi)角對(duì)應(yīng)的三邊,已知
成等差數(shù)列,
成等比數(shù)列
(Ⅰ)求角
的大;
(Ⅱ)若
,求
的值.
【解析】第一問(wèn)中利用依題意
且
,故![]()
第二問(wèn)中,由題意
又由余弦定理知
![]()
,得到
,所以
,從而得到結(jié)論。
(1)依題意
且
,故
……………………6分
(2)由題意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線(xiàn)PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
![]()
【解析】(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912413079631221/SYS201207091242012651351203_ST.files/image002.png">
又
是平面PAC內(nèi)的兩條相較直線(xiàn),所以BD
平面PAC,
而
平面PAC,所以
.
(Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD
平面PAC,
所以
是直線(xiàn)PD和平面PAC所成的角,從而![]()
.
由BD
平面PAC,
平面PAC,知
.在
中,由![]()
,得PD=2OD.因?yàn)樗倪呅蜛BCD為等腰梯形,
,所以
均為等腰直角三角形,從而梯形ABCD的高為
于是梯形ABCD面積
在等腰三角形AOD中,![]()
所以![]()
故四棱錐
的體積為
.
![]()
【點(diǎn)評(píng)】本題考查空間直線(xiàn)垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計(jì)算.第一問(wèn)只要證明BD
平面PAC即可,第二問(wèn)由(Ⅰ)知,BD
平面PAC,所以
是直線(xiàn)PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由
算得體積
((本小題共13分)
若數(shù)列
滿(mǎn)足
,數(shù)列
為
數(shù)列,記
=
.
(Ⅰ)寫(xiě)出一個(gè)滿(mǎn)足
,且
〉0的
數(shù)列
;
(Ⅱ)若
,n=2000,證明:E數(shù)列
是遞增數(shù)列的充要條件是
=2011;
(Ⅲ)對(duì)任意給定的整數(shù)n(n≥2),是否存在首項(xiàng)為0的E數(shù)列
,使得
=0?如果存在,寫(xiě)出一個(gè)滿(mǎn)足條件的E數(shù)列
;如果不存在,說(shuō)明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具滿(mǎn)足條件的E數(shù)列A5。
(答案不唯一,0,1,0,1,0也是一個(gè)滿(mǎn)足條件的E的數(shù)列A5)
(Ⅱ)必要性:因?yàn)镋數(shù)列A5是遞增數(shù)列,所以
.所以A5是首項(xiàng)為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因?yàn)閍1=12,a2000=2011,所以a2000=a1+1999.故
是遞增數(shù)列.綜上,結(jié)論得證。
已知函數(shù)f(x)(x∈R)滿(mǎn)足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿(mǎn)足a1=
,an+1=f(an),bn=
-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數(shù)列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com