欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

[解] 本題的隱含條件是式子的值為定值.即與α無關.故可令α=0°.計算得上式值為. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調(diào)遞減;當單調(diào)遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調(diào)遞增;當時,單調(diào)遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

 

查看答案和解析>>

在△ABC中,為三個內(nèi)角為三條邊,

(I)判斷△ABC的形狀;

(II)若,求的取值范圍.

【解析】本題主要考查正余弦定理及向量運算

第一問利用正弦定理可知,邊化為角得到

所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。

第二問中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴,;∴B+2C,則A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>

過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.

(I)試證明兩點的縱坐標之積為定值;

(II)若點是定直線上的任一點,試探索三條直線的斜率之間的關系,并給出證明.

【解析】本題主要考查拋物線與直線的位置關系以及發(fā)現(xiàn)問題和解決問題的能力.

(1)中證明:設下證之:設直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得 

 (2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之

設點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

  

KAN+KBN=+

本題主要考查拋物線與直線的位置關系以及發(fā)現(xiàn)問題和解決問題的能力.

 

查看答案和解析>>

(本題滿分12分)

某簡諧運動的圖像對應的函數(shù)解析式為:.

(1)指出此簡諧運動的周期、振幅、頻率、相位和初相;

(2)利用“五點法”作出函數(shù)在一個周期(閉區(qū)間)上的簡圖;

(3)說明它是由函數(shù)y=sinx的圖像經(jīng)過哪些變換而得到的。

【解】:(1)周期:         ;  振幅:         ;    

頻率:         ;   相位:         ;初相:         ;

    

0

  

 (2)

(3)① 先將函數(shù)的圖像                                      得到函數(shù)

的圖像;② 再將函數(shù)的圖像                              得到

函數(shù)的圖像;③ 最后再將函數(shù)的圖像              

                      得到函數(shù)的圖像。

查看答案和解析>>

如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)證明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

【解析】(Ⅰ)因為

是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)設AC和BD相交于點O,連接PO,由(Ⅰ)知,BD平面PAC,

所以是直線PD和平面PAC所成的角,從而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因為四邊形ABCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積

在等腰三角形AOD中,

所以

故四棱錐的體積為.

【點評】本題考查空間直線垂直關系的證明,考查空間角的應用,及幾何體體積計算.第一問只要證明BD平面PAC即可,第二問由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積

 

查看答案和解析>>


同步練習冊答案