題目列表(包括答案和解析)
| ln(2-x2) |
| |x+2|-2 |
| AB |
| AD |
函數(shù)
是定義在
上的奇函數(shù),且
。
(1)求實數(shù)a,b,并確定函數(shù)
的解析式;
(2)判斷
在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出
的單調(diào)減區(qū)間,并判斷
有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運用。第一問中,利用函數(shù)
是定義在
上的奇函數(shù),且
。
解得
,![]()
(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。
(3)中,由2知,單調(diào)減區(qū)間為
,并由此得到當(dāng),x=-1時,
,當(dāng)x=1時,![]()
解:(1)
是奇函數(shù),
。
即
,
,
………………2分
,又
,
,
,![]()
(2)任取
,且
,
,………………6分
,![]()
,
,
,
,
在(-1,1)上是增函數(shù)!8分
(3)單調(diào)減區(qū)間為
…………………………………………10分
當(dāng),x=-1時,
,當(dāng)x=1時,
。
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?
(II)當(dāng)AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.
(Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
![]()
【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力 第一問要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得
> 32 ,
∵x >2,∴
,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+
)
第二問,
當(dāng)且僅當(dāng)![]()
(3)令![]()
∴當(dāng)x
> 4,y′> 0,即函數(shù)y=
在(4,+∞)上單調(diào)遞增,∴函數(shù)y=
在[6,+∞]上也單調(diào)遞增.
∴當(dāng)x=6時y=
取得最小值,即SAMPN取得最小值27(平方米).
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com