欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(2)已知圓,直線.試證明當點在橢圓上運動時,直線與圓恒相交,并求直線被圓所截得的弦長的取值范圍. 查看更多

 

題目列表(包括答案和解析)

精英家教網已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為
2
2
的橢圓,其左焦點為F.若P是圓O上一點,連接PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

已知圓O:軸于AB兩點,曲線C是以為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓相切;

(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

已知橢圓C:數學公式(a>b>0)經過點(數學公式數學公式),一個焦點是F(0,-數學公式).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C與y軸的兩個交點為A1、A2,點P在直線y=a2上,直線PA1、PA2分別與橢圓C交于M、N兩點.試問:當點P在直線y=a2上運動時,直線MN是否恒經過定點Q?證明你的結論.

查看答案和解析>>

已知橢圓C:
y2
a2
+
x2
b2
=1
(a>b>0)經過點(
1
2
3
),一個焦點是F(0,-
3
).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C與y軸的兩個交點為A1、A2,點P在直線y=a2上,直線PA1、PA2分別與橢圓C交于M、N兩點.試問:當點P在直線y=a2上運動時,直線MN是否恒經過定點Q?證明你的結論.

查看答案和解析>>

已知橢圓C:(a>b>0)經過點(,),一個焦點是F(0,-).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C與y軸的兩個交點為A1、A2,點P在直線y=a2上,直線PA1、PA2分別與橢圓C交于M、N兩點.試問:當點P在直線y=a2上運動時,直線MN是否恒經過定點Q?證明你的結論.

查看答案和解析>>

一、選擇題:

    <menu id="4wmdk"><legend id="4wmdk"><div id="4wmdk"></div></legend></menu>

    2,4,6

    二、填空題:

    13、  14、 15、75  16、  17、②  18、④   19、

    20、21、22、23、24、25、

    26、

    三、解答題:

    27解:(1)當時,,

    ,∴上是減函數.

    (2)∵不等式恒成立,即不等式恒成立,

    不等式恒成立. 當時,  不恒成立;

    時,不等式恒成立,即,∴.

    時,不等式不恒成立. 綜上,的取值范圍是.

    28解:(1)

    (2),20 

    20與=3解得b=4,c=5或b=5,c= 4

    (3)設D到三邊的距離分別為x、y、z,則 

     又x、y滿足

    畫出不等式表示的平面區(qū)域得: 

    29(1)證明:連結,則//,  

    是正方形,∴.∵,∴

    ,∴.  

    ,∴

    (2)證明:作的中點F,連結

    的中點,∴

    ∴四邊形是平行四邊形,∴

    的中點,∴,

    ,∴

    ∴四邊形是平行四邊形,//,

    ,

    ∴平面

    平面,∴

    (3)

    . 

    30解: (1)由,

    ,

    則由,解得F(3,0) 設橢圓的方程為,

    ,解得 所以橢圓的方程為  

    (2)因為點在橢圓上運動,所以,   從而圓心到直線的距離. 所以直線與圓恒相交

    又直線被圓截得的弦長為

    由于,所以,則,

    即直線被圓截得的弦長的取值范圍是

    31解:(1)g(t) 的值域為[0,]

    (2)

    (3)當時,+=<2;

    時,.

    所以若按給定的函數模型預測,該市目前的大氣環(huán)境綜合指數不會超標。

    32解:(1)

     當時,時,,

     

     的極小值是

    (2),要使直線對任意的都不是曲線的切線,當且僅當時成立,

    (3)因最大值

     ①當時,

     

      ②當時,(?)當

     

    (?)當時,單調遞增;

    1°當時,

    ;

    2°當

    (?)當

    (?)當

    綜上