題目列表(包括答案和解析)
已知函數(shù)
,數(shù)列
的項滿足:
,(1)試求![]()
(2) 猜想數(shù)列
的通項,并利用數(shù)學歸納法證明.
【解析】第一問中,利用遞推關(guān)系
, ![]()
, ![]()
第二問中,由(1)猜想得:
然后再用數(shù)學歸納法分為兩步驟證明即可。
解: (1)
,
![]()
,
…………….7分
(2)由(1)猜想得:![]()
(數(shù)學歸納法證明)i)
,
,命題成立
ii) 假設(shè)
時,
成立
則
時,![]()
![]()
![]()
綜合i),ii) :
成立
在平面直角坐標系
,已知圓心在第二象限、半徑為
的圓
與直線
相切于坐標原點
.橢圓
與圓
的一個交點到橢圓兩焦點的距離之和為
.
(1)求圓
的方程; (7分)
(2)試探究圓
上是否存在異于原點的點
,使
到橢圓右焦點
的距離等于線段
的長,若存在,請求出點
的坐標;若不存在,請說明理由. (7分)
設(shè)
是兩個不共線的非零向量.
(1)若
=
,
=
,
=
,求證:A,B,D三點共線;
(2)試求實數(shù)k的值,使向量
和
共線. (本小題滿分13分)
【解析】第一問利用
=(
)+(
)+
=
=
得到共線問題。
第二問,由向量
和
共線可知
存在實數(shù)
,使得
=
(
)
=
,結(jié)合平面向量基本定理得到參數(shù)的值。
解:(1)∵
=(
)+(
)+![]()
=
=
……………3分
∴
……………5分
又∵
∴A,B,D三點共線 ……………7分
(2)由向量
和
共線可知
存在實數(shù)
,使得
=
(
)
……………9分
∴
=
……………10分
又∵
不共線
∴
……………12分
解得![]()
在平面直角坐標系
,已知圓心在第二象限、半徑為
的圓
與直線
相切于坐標原點
.橢圓
與圓
的一個交點到橢圓兩焦點的距離之和為
.
(1)求圓
的方程; (7分)
(2)試探究圓
上是否存在異于原點的點
,使
到橢圓右焦點
的距離等于線段
的長,若存在,請求出點
的坐標;若不存在,請說明理由. (7分)
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com