欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.第Ⅱ卷用鋼筆或圓珠筆直接答在試題卷中. 查看更多

 

題目列表(包括答案和解析)

必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在答題卷各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用鉛筆和涂改液。不按以上要求作答的答案無效。

第Ⅰ卷   選擇題(共50分)

一、選擇題(本大題共10小題,每小題5分,滿分50分)

1、設(shè)全集U={是不大于9的正整數(shù)},{1,2,3 },{3,4,5,6}則圖中陰影部分所表示的集合為(  )

       A.{1,2,3,4,5,6}    B. {7,8,9}

       C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

2、計算復數(shù)(1-i)2等于(  )

A.0                B.2              C. 4i                   D. -4i

查看答案和解析>>

答卷前,考生務(wù)必用黑色字跡的鋼筆或簽字筆將自己的姓名、班級和考號填寫在答題卷上。

查看答案和解析>>

14、圖(1)、(2)、(3)、(4)分別包含1個、5個、13個、25個第二十九屆北京奧運會吉祥物“福娃迎迎”,按同樣的方式構(gòu)造圖形,設(shè)第n個圖形包含f(n)個“福娃迎迎”,則f(n)=
2n2-2n+1
.(答案用數(shù)字或n的解析式表示)

查看答案和解析>>

某學校舉辦“有獎答題”活動,每位選手最多答10道題,每道題對應1份獎品,每份獎品價值相同.若選手答對一道題,則得到該題對應的獎品.答對一道題之后可選擇放棄答題或繼續(xù)答題,若選擇放棄答題,則得到前面答對題目所累積的獎品;若選擇繼續(xù)答題,一旦答錯,則前面答對題目所累積的獎品將全部送給現(xiàn)場觀眾,結(jié)束答題.假設(shè)某選手答對每道題的概率均為
23
,且各題之間答對與否互不影響.已知該選手已經(jīng)答對前6道題.
(Ⅰ)如果該選手選擇繼續(xù)答題,并在最后4道題中,在每道題答對后都選擇繼續(xù)答題.
(。┣笤撨x手第8題答錯的概率;
(ⅱ)記該選手所獲得的獎品份數(shù)為ξ,寫出隨機變量ξ的所有可能取值并求ξ的數(shù)學期望Eξ;
(Ⅱ)如果你是該選手,你是選擇繼續(xù)答題還是放棄答題?若繼續(xù)答題你將答到第幾題?請用概率或統(tǒng)計的知識給出一個合理的解釋.

查看答案和解析>>

(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分6分,第3小題滿分7分

已知曲線的方程為,為曲線上的兩點,為坐標原點,且有

(1)若所在直線的方程為,求的值;

(2)若點為曲線上任意一點,求證:為定值;

(3)在(2)的基礎(chǔ)上,用類比或推廣的方法對新的圓錐曲線寫出一個命題,并對該命題加以證明.

 

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題)

    BADAC    ABBCB    CD

二、填空題(每小題4分,共4小題)

13.0

14.n+(n+1)+…+(3n-2)=(2n-1)2

15.256+64π

16.①③

三、解答題

   (I)∵(2a-c)cosB=bcosC,

∴(2sinA-sinC)cosB=sinBcosC.……………………………………………2分

即2sinAcosB=sinBcosC+sinCcosB

=sin(B+C)

∵A+B+C=π,∴2sinAcosB=sinA.…………………………………………4分

∵0<A<π,∴sinA≠0.

∴cosB=.…………………………………………………………………5分

∵0<B<π,∴B=.…………………………………………………………6分

  (II)=4ksinA+cos2A.…………………………………………………………7分

=-2sin2A+4ksinA+1,A∈(0,)……………………………………9分

設(shè)sinA=t,則t∈.

則=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.…………………………10分

∵k>1,∴t=1時,取最大值.

依題意得,-2+4k+1=5,∴k=.………………………………………………12分

(18)(I)證明:

          連接B1C,與BC1相交于O,連接OD

          ∵BCC1B1是矩形,

∴O是B1C的中點.

又D是AC的中點,

∴OD//AB1.………………………………………………2分

∵AB­1面BDC­1,OD面BDC1,

∴AB1//面BDC1.…………………………………………4分

   (II)解:如力,建立空間直角坐標系,則

         C1(0,0,0),B(0,3,2),C(0,3,0),A(2,3,0),

         D(1,3,0)……………………5分

即.…………6分

易知=(0,3,0)是面ABC的一個法向量.

.…………………………8分

∴二面角C1―BD―C的余弦值為.………………………………9分

   (III)假設(shè)側(cè)棱AA1上存在一點P(2,y,0)(0≤y≤3),使得CP⊥面BDC1.

         則

          ∴方程組無解.

∴假設(shè)不成立.……………………………………………………11分

∴側(cè)棱AA1上不存在點P,使CP⊥面BDC1.…………………12分

19.(I)解:設(shè)答對題的個數(shù)為y,得分為ξ,y=0,1,2,4

           ∴ξ=0,2,4,8…………………………………………………………1分

           ……………………………………………………3分

           …………………………………………5分

           …………………………………………7分

           ………………………………………………9分

          則ξ的分布列為

ξ

0

2

4

8

P

   (II)Eξ=0×+2×+4×+8×=2

        答:該人得分的期望為2分………………………………12分

20.解:

   (I)由題意,令y=0,x<0,得f(x)[1-f(0)]=0,∵x<0時,f(x)>1.

        ∴1-f(0)=0. f(0)=1.…………………………………………………………2分

        適合題意的f(x)的一個解析式為f(x)=()x.………………………………4分

   (II)①由遞推關(guān)系知f(an+1)?f(-2-an)=1,即f(an+1-2-an)=f(0).

         ∵f(x)的R上單調(diào),∴an+1-an=2,(n∈N*),…………………………6分

         又a1=1,故an=2n-1.……………………………………………………7分

         ②bn=,Sn=b1+b2+…+bn=+()3+…+()2n-1

        

         欲比較Sn與的大小,只需比較4n與2n+1的大小.

         由=1,2,3代入可知4n>2n+1,猜想4n>2n+1.……………………10分

         下用數(shù)學歸納法證明

        (i)當n=1時,41>2×1+1成立

        (ii)假設(shè)當n=k時命題成立,即4k>2k+1

當n=k+1時,4k+1=4×4k>4(2k+1)=8k+4=2(k+1)+1+6k+1>2(k+1)+1,

說明當n=k+1時命題也成立.

由(i)(ii)可知,4n>2n+1 對于n∈N*都成立.

故Sn>.………………………………………………………………12分

注:證明4n>2n+1,除用數(shù)學歸納法證明以外,還可用其它方法證明,

如:4n=(1+3)n=1+

21.解:(I)定圓B的圓心坐標B(-,0),半徑r=6,

因為動圓P與定圓B內(nèi)切,所以|PA|+|PB|=6.

所以動圓圓心P的軌跡是以B、A為焦點,長軸長為6的橢圓.

設(shè)橢圓的方程為

則2a=6,a=3,c=

∴b2=a2-c2=4.

∴橢圓的方程為.……………………4分

   (II)設(shè)M(x1,y1),N(x2,y2),

則由

(1)當λ=1時,M與N重合,,滿足條件。

(2)當.

 

     綜合可得λ的取值范圍是[,5].………………………………12分

22.解:

   (I)f′(x)=3ax2+2bx-3,依題意,f′(1)=f′(-1)=0,

        即…………………………………………2分

        解得a=1,b=0.

        ∴f(x)=x3-3x.……………………………………………………4分

   (II)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1),

當-1<x<1時,f′(x)<0,故f(x)在區(qū)間[-1,1]上為減函數(shù),

fmax(x)=f(-1)=2,fmin(x)=f(1)=-2……………………………………6分

∵對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2

都有|f(x1)-f(x2)|≤|fmax(x) -fmin(x)|

|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4………………………………8分

   (III)f′(x)=3x2-3=3(x+1)(x-1),

         ∵曲線方程為y=x3-3x,∴點A(1,m)不在曲線上.

設(shè)切點為M(x0,y0),則點M的坐標滿足

因,故切線的斜率為

,

整理得.

∵過點A(1,m)可作曲線的三條切線,

∴關(guān)于x0方程=0有三個實根.……………………10分

設(shè)g(0)= ,則g′(x0)=6,

由g′(x0)=0,得x0=0或x0­=1.

∴g(x0)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.

∴函數(shù)g(x0)= 的極值點為x0=0,x0=1………………12分

∴關(guān)于x0方程=0有三個實根的充要條件是

,解得-3<m<-2.

故所求的實數(shù)a的取值范圍是-3<m<-2.……………………14分

 

 

 

 


同步練習冊答案