題目列表(包括答案和解析)
| 3 |
| π |
| 3 |
| π |
| 4 |
| π |
| 3 |
| 5 |
| 2 |
某個(gè)計(jì)算機(jī)有A,B兩個(gè)數(shù)據(jù)輸入口,另有C是計(jì)算結(jié)果的輸出口,計(jì)算過(guò)程是由A,B分別輸入正整數(shù)m和n.經(jīng)計(jì)算得正整數(shù)k,然后由C輸出(過(guò)程可簡(jiǎn)單表示為關(guān)系式f(m,n)=k).此種計(jì)算裝置完成的計(jì)算機(jī)滿足以下三個(gè)性質(zhì).
①若A,B的輸入1,則輸出的結(jié)果為2,即f(1,1)=2;
②若A輸入1,B的輸入由n變?yōu)閚+1,則輸出的結(jié)果比原來(lái)增大2,即f(1,n+1)=f(1,n)+2;
③若B輸入n,A的輸入由m變?yōu)閙+1,則輸出結(jié)果為原來(lái)的3倍,即f(m+1,n)=3f(m,n).
試回答下列問(wèn)題:
(1)若A輸入2,B輸入3,則輸出結(jié)果為多少?
(2)若A輸入1,B輸入n(n∈N+),則輸出結(jié)果為多少?
(3)由C能輸出多少個(gè)不同的兩位數(shù)?
說(shuō)明:本題題干比較長(zhǎng),情景相對(duì)陌生,將題干中的語(yǔ)言轉(zhuǎn)化為數(shù)列語(yǔ)言是解題關(guān)鍵.
已知點(diǎn)A、B、C的坐標(biāo)分別為A(3,0)、B(0,3)、C(cosα,sinα),
α∈(
,
).
(1)若|
|=|
|,求角α的值;
(2)若
·
=-1,求
的值.
【解析】第一問(wèn)中利用向量的模相等,可以得到角α的值。
第二問(wèn)中,
·
=-1,則化簡(jiǎn)
可知結(jié)論為![]()
解:因?yàn)辄c(diǎn)A、B、C的坐標(biāo)分別為A(3,0)、B(0,3)、C(cosα,sinα),
α∈(
,
).|
|=|
|
所以α=
.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911400068702336/SYS201207091140451245716150_ST.files/image003.png">·
=-1,
即
.
已知
,且
.
(1)求
的值;
(2)求
的值.
【解析】本試題主要考查了二項(xiàng)式定理的運(yùn)用,以及系數(shù)求和的賦值思想的運(yùn)用。第一問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以
,可得
,第二問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image008.png">,所以
,所以
,利用組合數(shù)性質(zhì)可知。
解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以
, ……3分
化簡(jiǎn)可得
,且
,解得
. …………6分
(2)
,所以
,
所以
,![]()
已知曲線
上動(dòng)點(diǎn)
到定點(diǎn)
與定直線
的距離之比為常數(shù)
.
(1)求曲線
的軌跡方程;
(2)若過(guò)點(diǎn)
引曲線C的弦AB恰好被點(diǎn)
平分,求弦AB所在的直線方程;
(3)以曲線
的左頂點(diǎn)
為圓心作圓
:
,設(shè)圓
與曲線
交于點(diǎn)
與點(diǎn)
,求
的最小值,并求此時(shí)圓
的方程.
【解析】第一問(wèn)利用(1)過(guò)點(diǎn)
作直線
的垂線,垂足為D.
代入坐標(biāo)得到
第二問(wèn)當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;
當(dāng)直線l的斜率為k時(shí),
;,化簡(jiǎn)得
![]()
第三問(wèn)點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè)
,, 不妨設(shè)
.
由于點(diǎn)M在橢圓C上,所以
.
由已知
,則
,
由于
,故當(dāng)
時(shí),
取得最小值為
.
計(jì)算得,
,故
,又點(diǎn)
在圓
上,代入圓的方程得到
.
故圓T的方程為:![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com