題目列表(包括答案和解析)
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當(dāng)
時(shí)
單調(diào)遞減;當(dāng)
時(shí)
單調(diào)遞增,故當(dāng)
時(shí),
取最小值![]()
于是對(duì)一切
恒成立,當(dāng)且僅當(dāng)
. 、
令
則![]()
當(dāng)
時(shí),
單調(diào)遞增;當(dāng)
時(shí),
單調(diào)遞減.
故當(dāng)
時(shí),
取最大值
.因此,當(dāng)且僅當(dāng)
時(shí),①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當(dāng)
時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增.故當(dāng)
,
即![]()
從而
,
又![]()
![]()
所以![]()
因?yàn)楹瘮?shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出
取最小值
對(duì)一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知數(shù)列
是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列
的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對(duì)任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù)![]()
,使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時(shí),
滿足
,![]()
,
![]()
第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
第三問(wèn)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時(shí),
滿足
,![]()
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時(shí),數(shù)列
中的
成等比數(shù)列
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com