欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )

A B C D

 

查看答案和解析>>

.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

一、選擇題     DBDAC    DCCCD    CB 

      • <blockquote id="awf0r"><tt id="awf0r"></tt></blockquote>
      • 天星

        13.;           14.-10,2;   15.;              16.540

        三、簡(jiǎn)答題

        17.(1),

                  cosC=,C=

           (2)c2=a2+b2-2abcosC,c=,=a2+b2-ab=(a+b)2-3ab.

        S=abs1nC=abs1n=ab=

                    Ab=6,(a+b)2=+3ab=+18=,a+b=

        18.方法一:(1)解:取AD中點(diǎn)O,連結(jié)PO,BO.

                      △PAD是正三角形,所以PO⊥AD,…………1分

                      又因?yàn)槠矫鍼AD⊥平面ABCD,所以,PO⊥平面ABCD, …………3分

                      BO為PB在平面ABCD上的射影, 

        所以∠PBO為PB與平面ABCD所成的角.…………4分

                      由已知△ABD為等邊三角形,所以PO=BO=

        所以PB與平面ABCD所成的角為45°     ………5分

           (2)△ABD是正三角形,所以AD⊥BO,所以AD⊥PB,  ………………6分

                      又,PA=AB=2,N為PB中點(diǎn),所以AN⊥PB,    ………………8分

                      所以PB⊥平面ADMN.              ………………9分

           (3)連結(jié)ON,因?yàn)镻B⊥平面ADMN,所以O(shè)N為PO在平面ADMN上的射影,

                      因?yàn)锳D⊥PO,所以AD⊥NO,             ………………11分

                      故∠PON為所求二面角的平面角.            ………………12分

                      因?yàn)椤鱌OB為等腰直角三角形,N為斜邊中點(diǎn),所以∠PON=45°,

        19.(1)隨意抽取4件產(chǎn)品檢查是隨機(jī)事件,而第一天有9件正品

                   第一天通過(guò)檢查的概率為               ……5分

        (2)同(1),第二天通過(guò)檢查的概率為           ……7分

                  因第一天,第二天是否通過(guò)檢查相互獨(dú)立

                  所以,兩天全部通過(guò)檢查的概率為:           ……10分

        (3)記得分為,則的值分別為0,1,2

                                     ……11分

                                    ……12分

                                             ……13分

        因此,    

        20.(1)yn=2logaxn,yn+1=2logaxn+1 ,yn+1 ? yn=2[logaxn+1 ? logaxn]=2loga

        {xn}為等比數(shù),為定值,所以{yn}為等差數(shù)列

        又因?yàn)閥6- y3=3d=-6,d=-2,y1=y3-2d =22,

        Sn=22n+= - n2+23n,故當(dāng)n=11或n=12時(shí),Sn取得最大值132

        (2)yn=22+(n-1)(-2)=2logaxn,xn=a12n>1

        當(dāng)a>1時(shí),12-n>0,   n<12;當(dāng)0<a<1時(shí),12-n<0   n>12,

                      所以當(dāng)0<a<1時(shí),存在M=12,當(dāng)n>M時(shí),xn>1恒成立。

        21.(1)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

        ,解得,所以

        當(dāng)且僅當(dāng)時(shí),取到最大值

        (2)由,

        ,

        .  ②

        設(shè)的距離為,則,又因?yàn)?sub>,

        所以,代入②式并整理,得

        解得,,代入①式檢驗(yàn),,

        故直線的方程是

        ,或

        22.(1)由K=e得f(x)=ex-ex, 所以f’(x)=ex-e. 由f’(x)>0得x>1,故f(x)的單調(diào)增區(qū)間

        為(1,+∞),由f’(x)<0得x<1,故f(x)的單調(diào)遞減區(qū)間為(-∞,1)(3分)

           (2)由f(|x|)>0對(duì)任意x∈R成立等價(jià)于f(x)>0對(duì)任意x≥0成立。由f’(x)=ex-k=0得x=lnk.  

        ①當(dāng)k∈(0,1) 時(shí) ,f’(x)=ex-k ≥1-k≥0(x>0),此時(shí)f(x)在(0,+∞上單調(diào)遞增,故f(x)

        ≥f(0)==1>),符合題意。②當(dāng)k∈(1,+∞)時(shí),lnk>0,當(dāng)X變化時(shí),f’(x)、f(x)的變化情況

        如下表:

        X

        (0,lnk)

        lnk

        (lnk,+ ∞)

        f’(x)

        0

        +

        f(x)

        單調(diào)遞減

        極小值

        單調(diào)遞增

         

         

         

        由此可得,在(0,+∞)上f(x)≥f(lnk)=k-lnk.依題意,k-klnk>0,又k>1,所以1<k<e.

        綜上所述,實(shí)數(shù)k的取值范圍是0<k<e.  (8分)

            (3)因?yàn)镕(x)=f(x)+f(-x)=ex+ex,所以F(x1)F(x2)=

        ,

        所以F(1)F(    n)>en+1+2,F(2)F(n-1)>en+1+2……F(n)F(1)>en+1+2.

        由此得,[F(1)F(2)…F(n)]2=[F(1)F(n)][F(2)F(n-1)]…[F(n)F(1)]>(en+1+2)n

        故F(1)F(2)…F(n)>(en+1+2) ,n∈N*     …….12分