題目列表(包括答案和解析)
設(shè)函數(shù)
,若
為函數(shù)
的一個極值點,則下列圖象不可能為
的圖象是
![]()
【答案】D
【解析】設(shè)
,∴
,
又∴
為
的一個極值點,
∴
,即
,
∴
,
當(dāng)
時,
,即對稱軸所在直線方程為
;
當(dāng)
時,
,即對稱軸所在直線方程應(yīng)大于1或小于-1.
已知
.
(1)求
的單調(diào)區(qū)間;
(2)證明:當(dāng)
時,
恒成立;
(3)任取兩個不相等的正數(shù)
,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
當(dāng)k
0時,
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當(dāng)k>0時,
>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 當(dāng)x變化時,h(x),
的變化情況如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
設(shè)G(x)=lnx-
(x
1)
=
=![]()
0,當(dāng)且僅當(dāng)x=1時,
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,綜上,當(dāng)x
1時, 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設(shè)H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=![]()
∴l(xiāng)nx0 –lnx
>0, ∴x0 >x![]()
【解析】T,i關(guān)系如下圖:
| T | 1 |
|
|
|
|
| i | 2 | 3 | 4 | 5 | 6 |
【答案】![]()
【練】
(1)(2005高考北京卷)已知函數(shù)f(x)=-x3+3x2+9x+a, (I)求f(x)的單調(diào)遞減區(qū)間;(II)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.答案:(1)(-∞,-1),(3,+∞)(2)-7
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當(dāng)
時
單調(diào)遞減;當(dāng)
時
單調(diào)遞增,故當(dāng)
時,
取最小值![]()
于是對一切
恒成立,當(dāng)且僅當(dāng)
. 、
令
則![]()
當(dāng)
時,
單調(diào)遞增;當(dāng)
時,
單調(diào)遞減.
故當(dāng)
時,
取最大值
.因此,當(dāng)且僅當(dāng)
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當(dāng)
時,
單調(diào)遞減;當(dāng)
時,
單調(diào)遞增.故當(dāng)
,
即![]()
從而
,
又![]()
![]()
所以![]()
因為函數(shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出
取最小值
對一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com