題目列表(包括答案和解析)
設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為
,![]()
所以![]()
(2) 不妨設(shè)
.由題意得
.又因為
,所以
,
于是
,
,
![]()
所以
,當(dāng)
,且
時,
取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且![]()
。
由
得定義知,
,![]()
![]()
又因為![]()
所以![]()
![]()
![]()
所以,![]()
對數(shù)表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對于所有的
,
的最大值為![]()
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線
的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到
,又因為
,這樣可知得到
。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為
…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
某地區(qū)對12歲兒童瞬時記憶能力進行調(diào)查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
|
|
視覺記憶能力 |
||||
|
偏低 |
中等 |
偏高 |
超常 |
||
|
聽覺 記憶 能力 |
偏低 |
0 |
7 |
5 |
1 |
|
中等 |
1 |
8 |
3 |
|
|
|
偏高 |
2 |
|
0 |
1 |
|
|
超常 |
0 |
2 |
1 |
1 |
由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
.
(I)試確定
、
的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為
,求隨機變量
的數(shù)學(xué)期望
.
【解析】1)中由表格數(shù)據(jù)可知,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的學(xué)生共有(10+a)人.記“視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分
所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分
(2)中由表格數(shù)據(jù)可知,具有聽覺記憶能力或視覺記憶能力超常的學(xué)生共有8人.
方法1:記“至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生”為事件B,
則“沒有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生”為事件![]()
(3)中由于從40位學(xué)生中任意抽取3位的結(jié)果數(shù)為
,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生共24人,從40位學(xué)生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的結(jié)果數(shù)為
,………………………7分
所以從40位學(xué)生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的概率為
,k=0,1,2,3
若函數(shù)
在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域為
,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)
是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數(shù)
為“優(yōu)美函數(shù)”,求實數(shù)
的取值范圍.
【解析】第一問中,利用定義,判定由題意得
,由
,所以![]()
第二問中, 由題意得方程
有兩實根
設(shè)
所以關(guān)于m的方程
在
有兩實根,
即函數(shù)
與函數(shù)
的圖像在
上有兩個不同交點,從而得到t的范圍。
解(I)由題意得
,由
,所以
(6分)
(II)由題意得方程
有兩實根
設(shè)
所以關(guān)于m的方程
在
有兩實根,
即函數(shù)
與函數(shù)
的圖像在
上有兩個不同交點。
![]()
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對任意的
有
≤
成立,求實數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域為![]()
![]()
由
,得![]()
當(dāng)x變化時,
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當(dāng)
時,取
,有
,故
時不合題意.當(dāng)
時,令
,即![]()
![]()
令
,得![]()
①當(dāng)
時,
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)
時,
,對于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時,
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當(dāng)n=1時,不等式左邊=
=右邊,所以不等式成立.
當(dāng)
時,![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
1. 構(gòu)造向量
,
,所以
,
.由數(shù)量積的性質(zhì)
,得
,即
的最大值為2.
2. ∵
,令
得
,所以
,當(dāng)
時,
,當(dāng)
時,
,所以當(dāng)
時,
.
3.∵
,∴
,
,又
,∴
,則
,所以周期
.作出
在
上的圖象知:若
,滿足條件的
(
)存在,且
,
關(guān)于直線
對稱,
,
關(guān)于直線
對稱,∴
;若
,滿足條件的
(
)存在,且
,
關(guān)于直線
對稱,
,
關(guān)于直線
對稱,
∴
.
4. 不等式
(
)表示的區(qū)域是如圖所示的菱形的內(nèi)部,
∵學(xué)高考解題技巧---數(shù)學(xué)題型專題--填空題的解法.files/image358.gif)
,
當(dāng)
,點
到點
的距離最大,此時
的最大值為
;
當(dāng)
,點
到點
的距離最大,此時
的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有
種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有
種情況;
(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有
種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為
.
6. ∵
,∴
,
設(shè)
,
,則
.
作出該不等式組表示的平面區(qū)域(圖中的陰影部分
).
令
,則
,它表示斜率為
的一組平行直線,易知,當(dāng)它經(jīng)過點
時,
取得最小值.
解方程組
,得
,∴學(xué)高考解題技巧---數(shù)學(xué)題型專題--填空題的解法.files/image486.gif)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com