欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖.已知直線L:的右焦點F.且交橢圓C于A.B兩點.直線 (1)求橢圓C的方程, (2)求證:橢圓C上任意一點P到焦點F的距離與到直線G的距離之比為常數(shù).并求出此常數(shù), 查看更多

 

題目列表(包括答案和解析)

如圖,已知直線L:數(shù)學公式的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線數(shù)學公式的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)若數(shù)學公式為x軸上一點,求證:數(shù)學公式

查看答案和解析>>

如圖,已知直線L:數(shù)學公式的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線數(shù)學公式的焦點為橢圓C 的上頂點,求橢圓C的方程;(2)(理科生做)連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;
否則說明理由.
(文科生做)若數(shù)學公式為x軸上一點,求證:數(shù)學公式

查看答案和解析>>

如圖,已知直線L:的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線的焦點為橢圓C 的上頂點,求橢圓C的方程;(2)(理科生做)連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;
否則說明理由.
(文科生做)若為x軸上一點,求證:

查看答案和解析>>

如圖,已知直線L:的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)若為x軸上一點,求證:

查看答案和解析>>

如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F,且交橢圓C于A,B兩點,點A,F(xiàn),B在直線G:x=a2上的射影依次為點D,K,E.
(1)若拋物線x2=4
3
y的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)連接AE,BD,證明:當m變化時,直線AE、BD相交于一定點.

查看答案和解析>>

一、填空題:中國數(shù)學論壇網(wǎng) http://www.mathbbs.cn 2008年03月18日正在開通

1.2   2.4   3.3   4.   5.12   6.―2   7.   8.   9.18

    <source id="ypz9p"><address id="ypz9p"><center id="ypz9p"></center></address></source>
    <listing id="ypz9p"><abbr id="ypz9p"></abbr></listing>

    • 2,4,6

      二、選擇題:

      13.C   14.D   15.A   16.B

      三、解答題:

      17.解:設(shè)的定義域為D,值域為A

          由                                                         …………2分

                              …………4分

          又                                                    …………6分

                                                                …………8分

          的定義域D不是值域A的子集

          不屬于集合M                                                             …………12分

      18.解:(1)VC―PAB=VP―ABC

                                            …………5分

         (2)取AB中點D,連結(jié)CD、PD

          ∵△ABC是正三角形 ∴CD⊥AB

      PA⊥底面ABC,∴CD⊥AP,∴CD⊥平面PAB

      ∠CPD是PC與平面PAB所成的角                                          …………8分

                                                               …………11分

      ∴PC與平面PAB所成角的大小為                          …………12分

      19.解:(1)                                             …………2分

                                   …………4分

                     …………6分

         (2)設(shè)                                        …………8分

        …………10分

      (m2)      …………12分

      答:當(m2)   …………14分

      20.解:(1)=3

                                                                      …………2分

      設(shè)圓心到直線l的距離為d,則

      即直線l與圓C相離                                                   …………6分

         (2)由  …………8分

      由條件可知,                                        …………10分

      又∵向量的夾角的取值范圍是[0,π]

                                                                 …………12分

                                                             …………14分

      21.解:(1)                       …………2分

                      …………4分

         (2)由

                                  …………6分

                                                                                    …………9分

         是等差數(shù)列                                                        …………10分

         (3)

         

                               …………13分

                         …………16分

      22.解:(1)∵直線L過橢圓C右焦點F

                                                         …………2分

          即

          ∴橢圓C方程為                                                  …………4分

         (2)記上任一點

         

          記P到直線G距離為d

          則                                                   …………6分

         

                                                                   …………10分

         (3)直線L與y軸交于、    …………12分

          由

                                                                              …………14分

          又由

               同理                                                        …………16分

         

                                                                              …………18分