欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.函數(R)的最小值是 , 查看更多

 

題目列表(包括答案和解析)

已知函數R),為其導函數,且有極小值
(1)求的單調遞減區(qū)間;
(2)若,,當時,對于任意x,的值至少有一個是正數,求實數m的取值范圍;
(3)若不等式為正整數)對任意正實數恒成立,求的最大值.

查看答案和解析>>

已知函數R),為其導函數,且有極小值
(1)求的單調遞減區(qū)間;
(2)若,,當時,對于任意x,的值至少有一個是正數,求實數m的取值范圍;
(3)若不等式為正整數)對任意正實數恒成立,求的最大值.

查看答案和解析>>

已知函數R),為其導函數,且有極小值
(1)求的單調遞減區(qū)間;
(2)若,當時,對于任意x,的值至少有一個是正數,求實數m的取值范圍;
(3)若不等式為正整數)對任意正實數恒成立,求的最大值.

查看答案和解析>>

已知函數

(I)若 在其定義域是增函數,求b的取值范圍;

(II)在(I)的結論下,設函數的最小值;

(III)設函數的圖象C1與函數的圖象C2交于點P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.

查看答案和解析>>

已知函數

(1)若 時,函數 在其定義域內是增函數,求b的取值范圍

(2)在(1)的結論下,設函數 ,求函數 的最小值;

(3)設函數的圖象C1 與函數的圖象C2 交于P,Q兩點,過線段PQ的中點R作x軸的垂線分別交C1、C2于M、N兩點,問是否存在點R,使C1 在M處的切線與C2 在N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由。

查看答案和解析>>

一、 1.A      2.C      3.C      4.B      5.A      6.C 

7.D      8.C      9.B     10.D     11.A     12.C

二、13.     14.0       15.     16.①②④  .

三、

17.解:解: ---------------------------------3分

   ---------------------------------------------------6分

  因為,   ---------------------------------------------------------------8分

  所以   ---------------------------------------------------------------------10分

  解得,故實數的取值范圍為[0,1] --------------------------------------12分

18.解:由條件知----------------4分

①當時,

---------------------------------------------------------------------------------------7分

②當

----------------------------------------------------------------------------------------------10分

縱上所述,的值域為-----------------------------------------------------------------------12分19.(I)解:因為α為第二象限的角,,

所以,,------------------------------------------------2分

 ------------------------------------------------------------------ 4分

所以, ---------------------------------------- 6分

   (II)解:因為β為第三象限的角,,

所以,------------------------------------------------------------8分

,--------------------10分

所以, -----------------------------12分

20.解:(I)由,得,

所以

整理,得       --------------------------------------------------------4分

解得:,∴ --------------------------------------------------------6分

(II)由余弦定理得:,即---------① 

,∴------------------------------------------------②,

①②聯立解得,-------------------------------------------------------------------- 10分

--------------------------------------------------12分

21.解:(Ⅰ)∵f(x)圖象過點(1,8),∴a−5+c+d=8,

即a+c+d=13  ①                                     …………………………1分

又f/(x)=3ax2−10x+c,且點(1,8)處的切線經過(3,0),

∴f/(1)== −4,即3a−10+c= −4,

3a+c=6  ②                                       …………………………3分

又∵f(x)在x=3 處有極值,∴f/(3)=0,

27a+c=30  ③                                    …………………………4分

聯立①、②、③解得a=1,c=3,d=9,

∴f(x)=x3−5x2+3x+9                                    …………………………6分

(Ⅱ)f/(x)=3x2−10x+3=(3x−1)(x−3)

由f/(x)=0得x1=,x2=3                            ………………………7分

當x∈(0,)時,f/(x)>0,f(x)單調遞增,

∴f(x)>f(0)=9                                    ………………………9分

當x∈(,3)時,f/(x)<0,f(x)單調遞減,

∴f(x)>f(3)=0.

又∵f(3)=0,

∴當m>3時,f(x)>0在(0,m)內不恒成立.         ………………………11分

∴當且僅當m∈(0,3]時,f(x)>0在(0,m)內恒成立.

所以m取值范圍為(0,3] .                          ………………………12分

 

22.(I)解:對函數 ------------------------------------- 2分

要使上是增函數,只要上恒成立,

上恒成立------------------------------------------------4分

因為上單調遞減,所以上的最小值是,

注意到a > 0,所以a的取值范圍是 ----------------------------------------------6分

   (II)解:①當時,由(I)知,上是增函數,

此時上的最大值是---------------------------8分

②當,

解得 ---------------------------------------------------------------------10分

因為,

所以上單調遞減,

此時上的最大值是----------------------13分

綜上,當時,上的最大值是

時,上的最大值是 --------------------------14分

<menu id="0oaue"></menu><tbody id="0oaue"></tbody>

天?星om

天?星om

 

 

  • <fieldset id="0oaue"><tr id="0oaue"></tr></fieldset>