題目列表(包括答案和解析)
| 分組 | 頻數(shù) | 頻率 | 頻率/組距 |
| … | … | … | … |
| [180,185) | x | y | z |
| [185,190) | m | n | p |
| … | … | … | … |
“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:
|
|
男性 |
女性 |
合計 |
|
反感 |
10 |
|
|
|
不反感 |
|
8 |
|
|
合計 |
|
|
30 |
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
.
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
|
P(K2>k) |
0.05 |
0.025 |
0.010 |
0.005 |
|
k |
3.841 |
5.024 |
6.635 |
7.879 |
下面的臨界值表供參考:
(參考公式:K2=
,其中n="a+b+c+d)"
“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:
| | 男性 | 女性 | 合計 |
| 反感 | 10 | | |
| 不反感 | | 8 | |
| 合計 | | | 30 |
| P(K2>k) | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 3.841 | 5.024 | 6.635 | 7.879 |
已知數(shù)列
的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項公式;
(Ⅱ) 設(shè)
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用
關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設(shè)
,
,
則
.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)
時,
,命題成立;
②假設(shè)
時,命題成立,即
,
則當(dāng)
時,![]()
![]()
即![]()
即![]()
故當(dāng)
時,命題成立.
綜上可知,對一切非零自然數(shù)
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
| 分 組 | 頻 數(shù) | 頻 率 |
| [80,90) | x | 0.04 |
| [90,100) | 9 | y |
| [100,110) | z | 0.38 |
| [110,120) | 17 | 0.34 |
| [120,130] | 3 | 0.06 |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com