欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(3)是否存在實數(shù)b.使得函數(shù)的圖象與函數(shù)的圖象恰有3個交點. 若存在.請求出實數(shù)b的值,若不存在.試說明理由. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的圖象過坐標原點O,且在點(-1,f(-1))處的切線的斜率是-5.
(1)試確定實數(shù)b,c的值,并求f(x)在區(qū)間[-1,2]上的最大值;
(2)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?說明理由.

查看答案和解析>>

已知函數(shù)數(shù)學公式的圖象過坐標原點O,且在點(-1,f(-1))處的切線的斜率是-5.
(Ⅰ)求實數(shù)b,c的值; 
(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;
(Ⅲ)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?說明理由.

查看答案和解析>>

已知函數(shù)數(shù)學公式的圖象在點P(0,f(0))處的切線方程為y=3x-2.
(1)求實數(shù)a,b的值;
(2)設數(shù)學公式是[2,+∞)上的增函數(shù).
①求實數(shù)m的最大值;
②當m取最大值時,是否存在點Q,使得過點Q的直線若能與曲線y=g(x)圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等?若存在,求出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

已知函數(shù)數(shù)學公式的圖象過坐標原點O,且在點(-1,f(-1))處的切線的斜率是-5.
(I)求實數(shù)b、c的值;
(II)求f(x)在區(qū)間[-1,2]上的最大值;
(III)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸.若存在請證明,若不存在說明理由.

查看答案和解析>>

已知函數(shù)的圖象過坐標原點O,且在點(﹣1,f(﹣1))處的切線的斜率是﹣5.
(1)求實數(shù)b,c的值; 
(2)求f(x)在區(qū)間[﹣1,2]上的最大值;
(3)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?說明理由.

查看答案和解析>>

 

一、選擇題(本大題共12小題,每題5分,共60分)

1.A    2.B    3.C    4.A    5.D    6.C    7.B    8.C    9.A

10.B   11.(理)C(文)B       12.D

二、填空題(本大題共4小題,每題4分,共16分)

13.                           14.②③                 15.47                    16.□

三、解答題(本大題共6小題,共計76分)

17.解:

   (1)依題意函數(shù)的圖象按向量平移后得

                                                ………………………2分

       即=                                                ………………………4分

       又

       比較得a=1,b=0                                                                  ………………………6分

   (2)

       =                                                             ………………………9分

      

      

       ∴的單調增區(qū)間為[,]          ……………………12分

18.解:

   (1)設連對的個數(shù)為y,得分為x

       因為y=0,1,2,4,所以x=0,2,4,8.

      

  • <samp id="ouc2m"></samp>

      x

      0

      2

      4

      8

         

             于是x的分布列為

      • <samp id="ouc2m"></samp>

        ……9分

         

         

           (2)Ex=0×+2×+4×+8×=2

               即該人得分的期望為2分。                                                     ……………………12分

           (文)

           (1)從口袋A中摸出的3個球為最佳摸球組合即為從口袋A中摸出2個紅球和一個黑球

               其概念為                                                     ……………………6分

           (2)由題意知:每個口袋中摸球為最佳組合的概率相同,從5個口袋中摸球可以看成5

               次獨立重復試驗,故所求概率為………………………12分

        19.解法一:以D為原點,DA,DC,DD1

               所在直線分別為x軸、y軸、z軸,建

               立空間直角坐標系D―xyz,則

               A(a,0,0)、B(a,2a,0)、

               C(0,2a,0)、A1(a,0,a)、

               D1(0,0,a)。E、P分別是BC、A1D1

               的中點,M、N分別是AE、CD1的中點

               ∴……………………………………2分

           (1)⊥面ADD1A1

               而=0,∴,又∵MN面ADD1A1,∴MN∥面ADD1A1;………4分

           (2)設面PAE的法向量為,又

               則又

               ∴=(4,1,2),又你ABCD的一個法向量為=(0,0,1)

               ∴

               所以二面角P―AE―D的大小為                        ………………………8分

           (3)設為平面DEN的法向量,

               又=(),=(0,a,),,0,a)

               ∴所以面DEN的一個法向量=(4,-1,2)

               ∵P點到平面DEN的距離為

               ∴

              

               所以                                              ……………………12分

               解法二:

           (1)證明:取CD的中點為K,連接

               ∵M,N,K分別為AE,CD1,CD的中點

               ∴MK∥AD,ND∥DD1,∴MK∥面ADD1A1,NK∥面ADD1A1

               ∴面MNK∥面ADD1A1,∴MN∥面ADD1A1,                     ………………………4分

           (2)設F為AD的中點,∵P為A1D1的中點

               ∴PF∥DD1,PF⊥面ABCD

               作FH⊥AE,交AE于H,連結PH,則由三垂

               線定理得AE⊥PH,從而∠PHF為二面角

               P―AE―D的平面角。

               在Rt△AAEF中,AF=,EF=2,AE=,

               從而FH=

               在Rt△PFH中,tan∠PHF=

               故:二面角P―AE―D的大小為arctan

           (3)

               作DQ⊥CD1,交CD1于Q,

               由A1D1⊥面CDD1C1,得A1D1⊥DQ,∴DQ⊥面BCD1A1

               在Rt△CDD1中,

               ∴  ……………………12分

        20.解:(理)

           (1)函數(shù)的定義域為(0,+

               當a=-2e時,            ……………………2分

               當x變化時,,的變化情況如下:

        (0,

        ,+

        0

        極小值

               由上表可知,函數(shù)的單調遞減區(qū)間為(0,

               單調遞增區(qū)間為(,+

               極小值是)=0                                                           ……………………6分

           (2)由           ……………………7分

               又函數(shù)為[1,4]上單調減函數(shù),

               則在[1,4]上恒成立,所以不等式在[1,4]上恒成立。

               即在,[1,4]上恒成立                                           ……………………10分

               又=在[1,4]上為減函數(shù)

               ∴的最小值為

               ∴                                                                            ……………………12分

           (文)(1)∵函數(shù)在[0,1]上單調遞增,在區(qū)間上單調遞

               減,

               ∴x=1時,取得極大值,

               ∴

               ∴4-12+2a=0a=4                                                                                      ………………………4分

           (2)A(x0,f(x0))關于直線x=1的對稱點B的坐標為(2- x0,f(x0

              

               =

               ∴A關于直線x=1的對稱點B也在函數(shù)的圖象上            …………………8分

           (3)函數(shù)的圖象與函數(shù)的圖象恰有3個交點,等價于方程

               恰有3個不等實根,

              

               ∵x=0是其中一個根,

               ∴方程有兩個非零不等實根

                                               ……………………12分

        21.解:(理)(1)由已知得:

                      

               ∵                                                     ①…………………2分

               ∴                                                                 ②

               ②―①

               即

               又

               ∴                                                                      ……………………5分

               ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

           (2)∵

               ∴

               ∴                   …………………8分

               兩式相減

              

               ∴                                                          ……………………10分

               ∴               ……………………12分

           (文)(1)由已知得:

              

               ∴

               ∵                                                     ①…………………2分

               ∴                                                                 ②

               ②―①

               即

               又

               ∴                                                                      ……………………5分

               ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

           (2)∵

               ∴

               ∴                   …………………8分

               兩式相減

              

               ∴                                                          ……………………10分

               ∴               ……………………12分

        22.解:(1)

               設M(x,y)是曲線C上任一點,因為PM⊥x軸,

               所以點P的坐標為(x,3y)                                                  …………………2分

               點P在橢圓,所以

               因此曲線C的方程是                                           …………………5分

           (2)當直線l的斜率不存在時,顯然不滿足條件

               所以設直線l的方程為與橢圓交于Ax1,y1),Bx2,y2),N點所在直線方

               程為

               ,由

                                                       ……………………6分

               由△=………………8分

               ∵,所以四邊形OANB為平行四邊形              …………………9分

               假設存在矩形OANB,則

              

              

               所以

               即                                                                   ……………………11分

               設N(),由,得

               ,

               即N點在直線

               所以存在四邊形OANB為矩形,直線l的方程為 ……………………14分

         

         

         

        <kbd id="ouc2m"><center id="ouc2m"></center></kbd>