欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(1)求證:數(shù)列是等比數(shù)列, 查看更多

 

題目列表(包括答案和解析)

如圖,點D在反比例函數(shù)y=
k
x
(k>0)上,點C在x軸的正半軸上且坐標為(4,0),△ODC是以CO為斜邊的等腰直角三角形.
(1)求反比例函數(shù)的解析式;
精英家教網(wǎng)
(2)點B為橫坐標為1的反比例函數(shù)圖象上的一點,BA、BE分別垂直x軸和y軸,連接OB,將OABE沿OB折疊,使A點落在點A′處,A′B與y軸交于點F,求OF的長;
精英家教網(wǎng)
(3)直線y=-x+3交x軸于M點,交y軸于N點,點P是雙曲線y=
k
x
(k>0)上的一動點,PQ⊥x軸于Q點,PR⊥y軸于R點,PQ,PR與直線MN交于H,G兩點.給出下列兩個結論:①△PGH的面積不變;②MG•NH的值不變,其中有且只有一個結論是正確的,請你選擇并證明求值.
精英家教網(wǎng)

查看答案和解析>>

如圖,點D在反比例函數(shù)y=數(shù)學公式(k>0)上,點C在x軸的正半軸上且坐標為(4,0),△ODC是以CO為斜邊的等腰直角三角形.
(1)求反比例函數(shù)的解析式;

(2)點B為橫坐標為1的反比例函數(shù)圖象上的一點,BA、BE分別垂直x軸和y軸,連接OB,將OABE沿OB折疊,使A點落在點A′處,A′B與y軸交于點F,求OF的長;

(3)直線y=-x+3交x軸于M點,交y軸于N點,點P是雙曲線y=數(shù)學公式(k>0)上的一動點,PQ⊥x軸于Q點,PR⊥y軸于R點,PQ,PR與直線MN交于H,G兩點.給出下列兩個結論:①△PGH的面積不變;②MG•NH的值不變,其中有且只有一個結論是正確的,請你選擇并證明求值.

查看答案和解析>>

如圖,點D在反比例函數(shù)y=
k
x
(k>0)上,點C在x軸的正半軸上且坐標為(4,0),△ODC是以CO為斜邊的等腰直角三角形.
(1)求反比例函數(shù)的解析式;

(2)點B為橫坐標為1的反比例函數(shù)圖象上的一點,BA、BE分別垂直x軸和y軸,連接OB,將OABE沿OB折疊,使A點落在點A′處,A′B與y軸交于點F,求OF的長;

(3)直線y=-x+3交x軸于M點,交y軸于N點,點P是雙曲線y=
k
x
(k>0)上的一動點,PQ⊥x軸于Q點,PR⊥y軸于R點,PQ,PR與直線MN交于H,G兩點.給出下列兩個結論:①△PGH的面積不變;②MG•NH的值不變,其中有且只有一個結論是正確的,請你選擇并證明求值.

查看答案和解析>>

閱讀材料并解答問題:
我國是最早了解和應用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應用,古希臘數(shù)學家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
關于勾股定理的研究還有一個很重要的內容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達哥拉斯等學派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹,使之構成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹
 
棵.
精英家教網(wǎng)

查看答案和解析>>

已知, BC∥OA,∠B=∠A=100°,試回答下列問題:
如圖1所示,求證:OB∥AC.
(2)如圖2,若點E、F在線段BC上,且滿足∠FOC=∠AOC ,并且OE平分∠BOF.則∠EOC的度數(shù)等于__     _____;(在橫線上填上答案即可).
(3)在(2) 的條件下,若平行移動AC,如圖3,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值.
(4)在(3)的條件下,如果平行移動AC的過程中,若使∠OEB=∠OCA,此時∠OCA度數(shù)等于             .(在橫線上填上答案即可).  

查看答案和解析>>


同步練習冊答案