題目列表(包括答案和解析)
如圖,邊長(zhǎng)為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將
折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QD
AO;
(Ⅱ)求二面角O—AE—D的余弦值.
![]()
【解析】第一問(wèn)中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
第二問(wèn)中,作MN
AE,垂足為N,連接DN
因?yàn)锳O
EO, DO
EO,EO
平面AOD,所以EO
DM
,因?yàn)锳O
DM ,DM
平面AOE
因?yàn)镸N
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
![]()
(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
(2)作MN
AE,垂足為N,連接DN
因?yàn)锳O
EO, DO
EO,EO
平面AOD,所以EO
DM
,因?yàn)锳O
DM ,DM
平面AOE
因?yàn)镸N
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=![]()
二面角O-AE-D的平面角的余弦值為![]()
設(shè)函數(shù)f(x)=lnx,g(x)=ax+
,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)。科。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,g(x)=ax+![]()
則其導(dǎo)數(shù)為![]()
由題意得,![]()
第二問(wèn),由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)
時(shí),
,有
;當(dāng)
時(shí),
,有
;當(dāng)x=1時(shí),
,有
解:因?yàn)?i>f(x)=lnx,g(x)=ax+![]()
則其導(dǎo)數(shù)為![]()
由題意得,![]()
(11)由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)
時(shí),
,有
;當(dāng)
時(shí),
,有
;當(dāng)x=1時(shí),
,有![]()
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當(dāng)
時(shí)
單調(diào)遞減;當(dāng)
時(shí)
單調(diào)遞增,故當(dāng)
時(shí),
取最小值![]()
于是對(duì)一切
恒成立,當(dāng)且僅當(dāng)
. 、
令
則![]()
當(dāng)
時(shí),
單調(diào)遞增;當(dāng)
時(shí),
單調(diào)遞減.
故當(dāng)
時(shí),
取最大值
.因此,當(dāng)且僅當(dāng)
時(shí),①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當(dāng)
時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增.故當(dāng)
,
即![]()
從而
,
又![]()
![]()
所以![]()
因?yàn)楹瘮?shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出
取最小值
對(duì)一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對(duì)如下數(shù)表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,![]()
所以![]()
(2) 不妨設(shè)
.由題意得
.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以
,
于是
,
,
![]()
所以
,當(dāng)
,且
時(shí),
取得最大值1。
(3)對(duì)于給定的正整數(shù)t,任給數(shù)表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且![]()
。
由
得定義知,
,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">
所以![]()
![]()
![]()
所以,![]()
對(duì)數(shù)表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對(duì)于所有的
,
的最大值為![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com