題目列表(包括答案和解析)
設函數(shù)![]()
(1)當
時,求曲線
處的切線方程;
(2)當
時,求
的極大值和極小值;
(3)若函數(shù)
在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍.
【解析】(1)中,先利用
,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導數(shù)的正負確定單調性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了
在區(qū)間
導數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當
……2分
∴![]()
即
為所求切線方程!4分
(2)當![]()
令
………………6分
∴
遞減,在(3,+
)遞增
∴
的極大值為
…………8分
(3)![]()
①若
上單調遞增!酀M足要求!10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數(shù)
的取值范圍是![]()
已知函數(shù)![]()
(1)若函數(shù)
的圖象經過P(3,4)點,求a的值;
(2)比較
大小,并寫出比較過程;
(3)若
,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質的運用。第一問中,因為函數(shù)
的圖象經過P(3,4)點,所以
,解得
,因為
,所以
.
(2)問中,對底數(shù)a進行分類討論,利用單調性求解得到。
(3)中,由
知,
.,指對數(shù)互化得到
,,所以
,解得所以,
或
.
解:⑴∵函數(shù)
的圖象經過
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵當
時,
;
當
時,
. ……………… 6分
因為,
,![]()
當
時,
在
上為增函數(shù),∵
,∴
.
即
.當
時,
在
上為減函數(shù),
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
已知
,函數(shù)![]()
(1)當
時,求函數(shù)
在點(1,
)的切線方程;
(2)求函數(shù)
在[-1,1]的極值;
(3)若在
上至少存在一個實數(shù)x0,使
>g(xo)成立,求正實數(shù)
的取值范圍。
【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中
,那么當
時,
又
所以函數(shù)
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當
時,
又
∴ 函數(shù)
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設
,![]()
對
求導,得![]()
∵
,
![]()
∴
在區(qū)間
上為增函數(shù),則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數(shù)
的取值范圍是(![]()
,
)
| A.3個 | B.7個 | C.8個 | D.9個 |
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com