題目列表(包括答案和解析)
已知函數(shù) ![]()
R).
(Ⅰ)若
,求曲線
在點
處的的切線方程;
(Ⅱ)若
對任意 ![]()
恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當
時,
.
因為切點為(
),
則
,
所以在點(
)處的曲線的切線方程為:![]()
第二問中,由題意得,
即
即可。
Ⅰ)當
時,
.
,
因為切點為(
),
則
,
所以在點(
)處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,
即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為
,所以
恒成立,
故
在
上單調遞增,
……12分
要使
恒成立,則
,解得
.……15分
解法二:
……7分
(1)當
時,
在
上恒成立,
故
在
上單調遞增,
即
.
……10分
(2)當
時,令
,對稱軸
,
則
在
上單調遞增,又
① 當
,即
時,
在
上恒成立,
所以
在
單調遞增,
即
,不合題意,舍去
②當
時,
,
不合題意,舍去 14分
綜上所述:
(本小題滿分13分)某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時間僅能持續(xù)5個月,預測上市初期和后期會因供應不足使價格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求,使價格連續(xù)下跌.現(xiàn)有三種價格模擬函數(shù):①
;②
;③
.(以上三式中
均為常數(shù),且
)
(1)為準確研究其價格走勢,應選哪種價格模擬函數(shù)(不必說明理由)
(2)若
,
,求出所選函數(shù)
的解析式(注:函數(shù)定義域是
.其中
表示8月1日,
表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經濟效益,當?shù)卣媱澰趦r格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內價格下跌.
(本小題滿分13分)某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時間僅能持續(xù)5個月,預測上市初期和后期會因供應不足使價格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求,使價格連續(xù)下跌.現(xiàn)有三種價格模擬函數(shù):①
;②
;③
.(以上三式中
均為常數(shù),且
)
(1)為準確研究其價格走勢,應選哪種價格模擬函數(shù)(不必說明理由)
(2)若
,
,求出所選函數(shù)
的解析式(注:函數(shù)定義域是
.其中
表示8月1日,
表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經濟效益,當?shù)卣媱澰趦r格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內價格下跌.
設函數(shù)
.
(I)求
的單調區(qū)間;
(II)當0<a<2時,求函數(shù)
在區(qū)間
上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到
.
.
令
,則
,所以
或
,得到結論。
第二問中,
(
).
.
因為0<a<2,所以
,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)
在
上為減函數(shù),在
上為增函數(shù).
(I)定義域為
. ………………………1分
.
令
,則
,所以
或
. ……………………3分
因為定義域為
,所以
.
令
,則
,所以
.
因為定義域為
,所以
. ………………………5分
所以函數(shù)的單調遞增區(qū)間為
,
單調遞減區(qū)間為
.
………………………7分
(II)
(
).
.
因為0<a<2,所以
,
.令
可得
.…………9分
所以函數(shù)
在
上為減函數(shù),在
上為增函數(shù).
①當
,即
時,
在區(qū)間
上,
在
上為減函數(shù),在
上為增函數(shù).
所以
. ………………………10分
②當
,即
時,
在區(qū)間
上為減函數(shù).
所以
.
綜上所述,當
時,
;
當
時,![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com