題目列表(包括答案和解析)
材料:采訪零向量
W:你好!零向量.我是《數(shù)學天地》的一名記者,為了讓在校的高中生更好了解你,能不能對你進行一次采訪呢?
零向量:當然可以,我們向量王國隨時恭候大家的光臨,很樂意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務.
W:好的,那就開始吧!你的名字有什么特殊的含義嗎?
零向量:零向量就是長度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來表示我.
W:你與其他向量有什么共同之處呢?
零向量:既然我是向量王國的一個成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進行加、減法運算時滿足交換律和結合律,還定義了與實數(shù)的積.
W:你有哪些值得驕傲的特殊榮耀呢?
零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運算中,我與實數(shù)0很有相似之處.
W:你有如此多的榮耀,那么是否還有煩惱之事呢?
零向量:當然有了,在向量王國還有許多“權利和義務”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對我進行了限制.所有這些確實給一些高中生帶來了很多苦惱,在此我向大家真誠地說一聲:對不起,這不是我的錯.但我還是很高興有這次機會與大家見面.
W:OK!采訪就到這里吧,非常感謝你的合作,再見!
零向量:Bye!
閱讀上面的材料回答下面問題.
應用零向量時應注意哪些問題?
蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成.組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料.蜂房的巢壁厚0.073毫米,誤差極小.
丹頂鶴總是成群結隊遷飛,而且排成“人”字形.“人”字形的角度是110度.更精確地計算還表明“人”字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的“默契”?
蜘蛛結的“八卦”形網(wǎng),是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規(guī)也很難畫出像蜘蛛網(wǎng)那樣勻稱的圖案.
冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數(shù)學,因為球形使身體的表面積最小,從而散發(fā)的熱量也最少.
真正的數(shù)學“天才”是珊瑚蟲.珊瑚蟲在自己的身上記下“日歷”,它們每年在自己的體壁上“刻畫”出365條斑紋,顯然是一天“畫”一條.奇怪的是,古生物學家發(fā)現(xiàn)3億5千萬年前的珊瑚蟲每年“畫”出400幅“水彩畫”.天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天.
1.同學們,大自然中有許多有關數(shù)學的奧妙,許多現(xiàn)象有意無意地應用著數(shù)學,對于這些現(xiàn)象你有什么看法嗎?請你談談你對大自然中的數(shù)學現(xiàn)象的認識.
2.把你發(fā)現(xiàn)的大自然中的數(shù)學問題告訴你的同學和老師,讓他們也分享一下你認識大自然的樂趣.
如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因為∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴利用法向量的夾角公式,
,
∴
與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接
,則點
、
,
![]()
∴
,又點
,
,∴![]()
∴
,且
與
不共線,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴
,
∴
與
的夾角為
,即二面角
的大小為![]()
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
![]()
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設平面PCD的法向量
,
則
,即
.不防設
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設點E的坐標為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因為
,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1) 求證:A1C⊥平面BCDE;
(2) 若M是A1D的中點,求CM與平面A1BE所成角的大;
(3) 線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由
【解析】(1)∵
DE∥BC∴
∴
∴
∴
又∵
∴![]()
(2)如圖,以C為坐標原點,建立空間直角坐標系C-xyz,
![]()
則![]()
![]()
設平面
的法向量為
,則
,又
,
,所以
,令
,則
,所以
,
設CM與平面
所成角為
。因為
,
所以![]()
所以CM與平面
所成角為
。
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com