題目列表(包括答案和解析)
已知
.
(1)求
的單調(diào)區(qū)間;
(2)證明:當(dāng)
時(shí),
恒成立;
(3)任取兩個(gè)不相等的正數(shù)
,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
當(dāng)k
0時(shí),
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當(dāng)k>0時(shí),
>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),
的變化情況如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
設(shè)G(x)=lnx-
(x
1)
=
=![]()
0,當(dāng)且僅當(dāng)x=1時(shí),
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,綜上,當(dāng)x
1時(shí), 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設(shè)H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=![]()
∴l(xiāng)nx0 –lnx
>0, ∴x0 >x![]()
已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對應(yīng)值如下表.f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.
![]()
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).
其中真命題的個(gè)數(shù)有 ( ).
A.4 B.3 C.2 D.1
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位.已知直線
的參數(shù)方程為
(t為參數(shù),0<a<
),曲線C的極坐標(biāo)方程為
.
(I)求曲線C的直角坐標(biāo)方程;
(II)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)a變化時(shí),求|AB|的最小值.
已知數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),其前n項(xiàng)和為Sn,點(diǎn)Pn的坐標(biāo)為(xn,Sn),若所有這樣的點(diǎn)Pn (n=1,2,…)都在斜率為k的同一直線(常數(shù)k≠0,1)上.
(Ⅰ)求證:數(shù)列{xn}是等比數(shù)列;
(Ⅱ)設(shè)
滿足
ys=
,yt=
(s,t∈N,且s≠t)共中a為常數(shù),且1<a<
,試判斷,是否存在自然
數(shù)M,使當(dāng)n>M時(shí),xn>1恒成立?若存在,求出相應(yīng)的M;若不存在,請說明理由
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com