欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

      <li id="t9r8y"><legend id="t9r8y"></legend></li>

        <label id="t9r8y"></label>
        <span id="t9r8y"></span>
        例65.若四面體各棱的長是1或2.且該四面體不是正四面體.則其體積是 . 查看更多

         

        題目列表(包括答案和解析)

        若四面體各棱的長是1或2,且該四面體不是正四面體,則其體積是
         
        (只需寫出一個可能的值).

        查看答案和解析>>

        若四面體各棱的長是1或2,且該四面體不是正四面體,則其體積是_____________(只需寫出一個可能的值).

        查看答案和解析>>

        若四面體各棱的長是1或2,且該四面體不是正四面體,則其體積的值是_______.(只需寫出一個可能的值)

        查看答案和解析>>

        若四面體各棱的長是1或2,且該四面體不是正四面體,則其體積是_____________(只需寫出一個可能的值).

        查看答案和解析>>

        若四面體各棱的長是1或2,且該四面體不是正四面體,則其體積的值是_______.(只需寫出一個可能的值)

        查看答案和解析>>

        1.解:由題意可知A=(-2,3),B=(0,4),∴=.

        2.解:∵=3x2,∵在(a,a3)處切線為y-a3=3a2(x-a),令y=0,得切線與x軸交點(),切線與直線x=a交于(a,a3),∴曲線處的切線與x軸、直線所圍成的三角形的面積為S=,令S=,解得a=±1.

        3.解:由已知得1-tanαtanβ=tanα-tanβ,∴tanα=.

        4.解:=

        5.解:4位乘客進(jìn)入4節(jié)車廂共有256種不同的可能,6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰為0,1,2,3的方法共有,∴這6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰好為0,1,2,3的概率為.

        6.解:①菱形不可能,如果這個四邊形是菱形,這時菱形的一條對角線垂直拋物線的對稱軸,這時四邊形的必有一個頂點在拋物線的對稱軸上(非拋物線的頂點); ④平行四邊形,也不可能,因為拋物上四個點組成的四邊形最多有一組對邊平行.故連接拋物線上任意四點組成的四邊形可能是②③⑤.

        7. 解:復(fù)數(shù)=

        8. 解:。

        9. 解:已知 ,,,∴ ,

        =

        =

        10. 解:在數(shù)列中,若,∴ ,即{}是以為首項,2為公比的等比數(shù)列,,所以該數(shù)列的通項.

        11.解:設(shè),函數(shù)有最大值,∵有最小值,∴ 0<a<1, 則不等式的解為,解得2<x<3,所以不等式的解集為.

        12.解:已知變量滿足約束條件 在坐標(biāo)系

        中畫出可行域,如圖為四邊形ABCD,其中A(3,1),,

        目標(biāo)函數(shù)(其中)中的z表示斜率為-a的直線系中的

        截距的大小,若僅在點處取得最大值,則斜率應(yīng)小于,即

        ,所以的取值范圍為(1,+∞)。

        13.【答案】

        【分析】

        14.【答案】:7

        【分析】:畫出可行域,當(dāng)直線過點(1,2)時,

        15.【答案】

        【分析】恒成立,

        恒成立,       

        16.【答案】:18

        【分析】是方程的兩根,故有:

                 (舍)。

                

        17.【答案】:25

        【分析】:所有的選法數(shù)為,兩門都選的方法為。         故共有選法數(shù)為

        18.【答案】

        【分析】

                 代入得:

                 設(shè)

                 又

                

        19.解:, 

        20.解:  點在x=0處連續(xù),

        所以  故

        21.解: 

        22.解:  ,

        23.解:設(shè)圓心,直線的斜率為, 弦AB的中點為,的斜率為,,所以 由點斜式得

        24. 解:則底面共,

        ,,由分類計數(shù)原理得上底面共,由分步類計數(shù)原理得共有

        25.解析:本小題主要考查三點共線問題。

              (舍負(fù)).

        26.解析:本小題主要考查橢圓的第一定義的應(yīng)用。依題直線過橢圓的左焦點,在 中,,又,∴

        27.解析:本小題主要考查三角形中正弦定理的應(yīng)用。依題由正弦定理得:

        ,即,

        28.解析:本小題主要考查球的內(nèi)接幾何體體積計算問題。其關(guān)鍵是找出

        球心,從而確定球的半徑。由題意,三角形DAC,三角形DBC都

        是直角三角形,且有公共斜邊。所以DC邊的中點就是球心(到

        D、A、C、B四點距離相等),所以球的半徑就是線段DC長度的一半。

        29.解析:本小題主要考查二次函數(shù)問題。對稱軸為下方圖像翻到軸上方.由區(qū)間[0,3]上的最大值為2,知解得檢驗時,

        不符,而時滿足題意.

        30.解析:本小題主要考查排列組合知識。依題先排除1和2的剩余4個元素有

        種方案,再向這排好的4個元素中插入1和2捆綁的整體,有種插法,

        ∴不同的安排方案共有種。

        31.解析:本小題主要考查線性規(guī)劃的相關(guān)知識。由恒成立知,當(dāng)時,

        恒成立,∴;同理,∴以,b為坐標(biāo)點

        所形成的平面區(qū)域是一個正方形,所以面積為1.

        32.解析:,所以,系數(shù)為.

        33.解析:由,所以,表面積為.

        34.解析:拋物線的焦點為,所以圓心坐標(biāo)為,圓C的方程為.

        35.解析:令,,則

        所以.

        36.解析:

        所以.

        37.解析:由已知得,單調(diào)遞減,所以當(dāng)時,

        所以,因為有且只有一個常數(shù)符合題意,所以,解得,所以的取值的集合為.

        38.【解】:∵展開式中項為

          ∴所求系數(shù)為   故填

        【點評】:此題重點考察二項展開式中指定項的系數(shù),以及組合思想;

        【突破】:利用組合思想寫出項,從而求出系數(shù);

        39.【解】:如圖可知:過原心作直線的垂線,則長即為所求;

        的圓心為,半徑為

         點到直線的距離為

          ∴      故上各點到的距離的最小值為

        【點評】:此題重點考察圓的標(biāo)準(zhǔn)方程和點到直線的距離;

        【突破】:數(shù)形結(jié)合,使用點到直線的距離距離公式。

        40.【解】:如圖可知:∵

            ∴  ∴正四棱柱的體積等于

        【點評】:此題重點考察線面角,解直角三角形,以及求正四面題的體積;

        【突破】:數(shù)形結(jié)合,重視在立體幾何中解直角三角形,熟記有關(guān)公式。

        41.【解】:∵等差數(shù)列的前項和為,且 

          即   ∴

          ∴,

          ∴  故的最大值為,應(yīng)填

        【點評】:此題重點考察等差數(shù)列的通項公式,前項和公式,以及不等式的變形求范圍;

        【突破】:利用等差數(shù)列的前項和公式變形不等式,利用消元思想確定的范圍解答本題的關(guān)鍵;

        42.解:

        43.解:設(shè),即

        是等邊三角形,

        中,

        44.解:①,向量垂直

        構(gòu)成等邊三角形,的夾角應(yīng)為

        所以真命題只有②。

        45.解:分兩類:第一棒是丙有,第一棒是甲、乙中一人有

        因此共有方案

        46.【答案】  2

        【解析】則向量與向量共線

        47.【答案】 2

        【解析】,∴切線的斜率,所以由

        48.【答案】

        【解析】設(shè)A(,)B(,)由,,();∴由拋物線的定義知

        【考點】直線與拋物線的位置關(guān)系,拋物線定義的應(yīng)用

        49.【答案】兩組相對側(cè)面分別平行;一組相對側(cè)面平行且全等;對角線交于一點;底面是平行四邊形.

        注:上面給出了四個充要條件.如果考生寫出其他正確答案,同樣給分.

        50.答案:

        解析:本小題主要考查求反函數(shù)基本知識。求解過程要注意依據(jù)函數(shù)的定義域進(jìn)行分段求解以及反函數(shù)的定義域問題。

        51.答案:

        解析:本小題主要考查立體幾何球面距離及點到面的距離。設(shè)球的半徑為,則,∴設(shè)、兩點對球心張角為,則,∴,∴,∴所在平面的小圓的直徑,∴,設(shè)所在平面的小圓圓心為,則球心到平面ABC的距離為

        52.答案:5

        解析:本小題主要考查二項式定理中求特定項問題。依題中,只有時,其展開式既不出現(xiàn)常數(shù)項,也不會出現(xiàn)與、乘積為常數(shù)的項。

        53.答案:

        解析:本小題主要針對考查三角函數(shù)圖像對稱性及周期性。依題在區(qū)間有最小值,無最大值,∴區(qū)間的一個半周期的子區(qū)間,且知的圖像關(guān)于對稱,∴,取

        54.解:由已知得,則

        55.解:

        56.

        57.解:真命題的代號是:   BD  。易知所盛水的容積為容器容量的一半,故D正確,于是A錯誤;水平放置時由容器形狀的對稱性知水面經(jīng)過點P,故B正確;C的錯誤可由圖1中容器位置向右邊傾斜一些可推知點P將露出水面。

        58.【答案】

        【解析】

        59.【答案】

        【解析】

        60.【答案】(-1,2)

        【解析】由函數(shù)的圖象過點(1,2)得: 即函數(shù)過點 則其反函數(shù)過點所以函數(shù)的圖象一定過點

        61.【答案】 ,

        【解析】(1)當(dāng)a>0時,由,所以的定義域是;

                (2) 當(dāng)a>1時,由題意知;當(dāng)0<a<1時,為增函數(shù),不合;

                   當(dāng)a<0時,在區(qū)間上是減函數(shù).故填.

        62.【答案】   ,  6

        【解析】第二空可分:

        ①當(dāng) 時, ;

        ②當(dāng) 時, ;

        ③當(dāng)時, ;

        所以 

        也可用特殊值法或ij同時出現(xiàn)6次.

        63.解:由余弦定理,原式

        64.解:由題意知所以

        ,所以解集為。

        65.解:依題意,所以

        66.解:由觀察可知當(dāng),每一個式子的第三項的系數(shù)是成等差數(shù)列的,所以,

        第四項均為零,所以

        67.解:令,令

            所以

        68. 解:圓心為,要沒有公共點,根據(jù)圓心到直線的距離大于半徑可得

        ,即,

        69.解:依題可以構(gòu)造一個正方體,其體對角線就是外接球的直徑.

         ,

        70. 解:①對除法如不滿足,所以排除,

        ②取,對乘法, ③④的正確性容易推得。

        71.【答案】: -1

        【分析】: a-2ai-1=a-1-2ai=2i,a=-1

        【考點】: 復(fù)數(shù)的運算

        【易錯】: 增根a=1沒有舍去。

        72.【答案】: 0

        【分析】: 利用數(shù)形結(jié)合知,向量a與