題目列表(包括答案和解析)
在復平面內(nèi),
是原點,向量
對應的復數(shù)是
,
=2+i。
(Ⅰ)如果點A關(guān)于實軸的對稱點為點B,求向量
對應的復數(shù)
和
;
(Ⅱ)復數(shù)
,
對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結(jié)論。
【解析】第一問中利用復數(shù)的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=![]()
第二問中,由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O(shè)為圓心,
為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i 3分
∵
(2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點在同一個圓上。 2分
證明:由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O(shè)為圓心,
為半徑的圓上
已知函數(shù)
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)設(shè)
,證明:對任意
,
.
1.選修4-1:幾何證明選講
如圖,
的角平分線
的延長線交它的外接圓于點![]()
(Ⅰ)證明:
∽△
;
(Ⅱ)若
的面積
,求
的大小.
證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.
因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因為△ABE∽△ADC,所以
,即AB·AC=AD·AE.
又S=
AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當
時,求證:
;
(Ⅱ)若
邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
![]()
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當a=1時,底面ABCD為正方形,![]()
![]()
又因為
,
………………2分
又
,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得![]()
由此知道a=2, 設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解:(Ⅰ)當
時,底面ABCD為正方形,![]()
![]()
又因為
,
又![]()
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
![]()
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2,
設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
![]()
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設(shè)平面PCD的法向量
,
則
,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設(shè)點E的坐標為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因為
,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
如圖,在直三棱柱
中,底面
為等腰直角三角形,
,
為棱
上一點,且平面
平面
.
(Ⅰ)求證:
點為棱
的中點;
(Ⅱ)判斷四棱錐
和
的體積是否相等,并證明。
![]()
【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,
易知
,
面
。由此知:
從而有
又點
是
的中點,所以
,所以
點為棱
的中點.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。
(1)過點
作
于
點,取
的中點
,連
。
面
面
且相交于
,面
內(nèi)的直線
,
面
!3分
又
面
面
且相交于
,且
為等腰三角形,易知
,
面
。由此知:
,從而有
共面,又易知
面
,故有
從而有
又點
是
的中點,所以
,所以
點為棱
的中點.
…6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com