欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.已知ABC平面上動點P.滿足.則P點的軌跡過ABC的A.內(nèi)心 B.垂心 C.重心 D.外心 查看更多

 

題目列表(包括答案和解析)

已知△ABC中,=a,=b,對于平面ABC上任意一點O,動點P滿足=ab,則動點P的軌跡是什么?其軌跡是否過定點,并說明理由.

查看答案和解析>>

已知A、B、C是平面上不共線的三點,O是三角形ABC的重心,動點P滿足
OP
=
1
3
(
1
2
OA
+
1
2
OB
+2
OC
)
,則點P一定為三角形ABC的( 。
A、AB邊中線的中點
B、AB邊中線的三等分點(非重心)
C、重心
D、AB邊的中點

查看答案和解析>>

已知A,B,C是平面上不共線的三點,o為平面ABC內(nèi)任一點,動點P滿足等式
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
](λ∈R
且λ≠1,則P的軌跡一定通過△ABC的( 。

查看答案和解析>>

已知O是平面上的一定點,A,B,C是平面上不共線的三個點,動點P滿足
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
,λ∈[0,+∞),則動點P的軌跡一定通過△ABC的(  )

查看答案和解析>>

已知O是平面上一定點,A、B、C是平面上不共線的三個點,動點P滿足,l∈[0,+∞).則P點的軌跡一定通過△ABC的(    )

A.重心            B.垂心            C.內(nèi)心              D.外心

查看答案和解析>>

 

一:選擇題:BCAAD   CCCBA  CC

 

二:填空題:

    20090109

    三:解答題

    17.解:(1)由已知

       ∴ 

       ∵  

    ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

        又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

    所以                                                                                    

    (2)在△ABC中,   

                

            

         而   

    如果,

        

                                                                       

                                      

    18.解:(1)點A不在兩條高線上,

     不妨設AC邊上的高:,AB邊上的高:

    所以AC,AB的方程為:

    ,即

    由此可得直線BC的方程為:。

    (2)

    由到角公式得:

    同理可算,

    19.解:(1)令

       則,因

    故函數(shù)上是增函數(shù),

    時,,即

       (2)令

        則

        所以在(,―1)遞減,(―1,0)遞增,

    (0,1)遞減,(1,)遞增。

    處取得極小值,且

    故存在,使原方程有4個不同實根。

    20.解(1)連結FO,F是AD的中點,

    *  OFAD,

    EO平面ABCD

    由三垂線定理,得EFAD,

    AD//BC,

    EFBC                          

    連結FB,可求得FB=PF=,則EFPB,

    PBBC=B,

     EF平面PBC。 

    (2)連結BD,PD平面ABCD,過點E作EOBD于O,

    連結AO,則EO//PD

    且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

    E是PB的中點,則O是BD的中點,且EO=PD=1

    在Rt△EOA中,AO=,

       所以:異面直線PD與AE所成的角的大小為

    (3)取PC的中點G,連結EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

    * PD平面ABCD,

    * PDBC,又DCBC,且PDDC=D,

    BC平面PDC

    * BCPC,

    EG//BC,則EGPC,

    FGPC

    所以FGE是二面角F―PC―B的平面角                                   

    在Rt△FEG中,EG=BC=1,GF=

    ,

    所以二面角F―PC―B的大小為   

    21.解(1), 

    ,

       ,令,

    所以遞增

    ,可得實數(shù)的取值范圍為

    (2)當時,

       所以:,

    即為 

    可化為

    由題意:存在,時,

    恒成立

    只要

     

    所以:

    ,知

    22.證明:(1)由已知得

      

    (2)由(1)得

    =